A covariant and extended model for relativistic magnetofluiddynamics
Annales de l'I.H.P. Physique théorique (1993)
- Volume: 58, Issue: 3, page 343-361
- ISSN: 0246-0211
Access Full Article
topHow to cite
topPennisi, Sebastiano. "A covariant and extended model for relativistic magnetofluiddynamics." Annales de l'I.H.P. Physique théorique 58.3 (1993): 343-361. <http://eudml.org/doc/76610>.
@article{Pennisi1993,
author = {Pennisi, Sebastiano},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {symmetric hyperbolic system; wave speeds; material waves; Alfvén waves; magnetoacoustic waves},
language = {eng},
number = {3},
pages = {343-361},
publisher = {Gauthier-Villars},
title = {A covariant and extended model for relativistic magnetofluiddynamics},
url = {http://eudml.org/doc/76610},
volume = {58},
year = {1993},
}
TY - JOUR
AU - Pennisi, Sebastiano
TI - A covariant and extended model for relativistic magnetofluiddynamics
JO - Annales de l'I.H.P. Physique théorique
PY - 1993
PB - Gauthier-Villars
VL - 58
IS - 3
SP - 343
EP - 361
LA - eng
KW - symmetric hyperbolic system; wave speeds; material waves; Alfvén waves; magnetoacoustic waves
UR - http://eudml.org/doc/76610
ER -
References
top- [1] T. Ruggeri and A. Strumia, Convex covariant entropy density, symmetric conservative form, and shock waves in relativistic magnetohydrodynamics, J. Math. Phys., 22, 1981, p. 1824. Zbl0469.76130MR628566
- [2] A.M. Anile and S. Pennisi, On the mathematical structure of test relativistic magneto–fluidynamics, Ann. Inst. Henri Poincaré, 46, 1987, p. 27. Zbl0618.76132MR877994
- [3] A. Strumia, Wave propagation and symmetric hyperbolic systems of conservation laws with constrained field variables. I. - Wave propagation with constrained fields, Il Nuovo Cimento, 101 B, 1988, p. 1. MR955218
- [4] A. Strumia, Wave propagation and symmetric hyperbolic systems of conservation laws with constrained field variables. II. - Symmetric hyperbolic systems with constrained fields, Il Nuovo Cimento, 101 B, 1988, p. 19. MR955219
- [5] I.-S. Liu and I. Müller, Extended thermodynamics of classical and degenerate ideal gases, Arch. Rational Mech. Anal., 83, 1983, p. 285. Zbl0554.76014MR714978
- [6] I.-S. Liu, I. Mûller and T. Ruggeri, Relativistic thermodynamics of gases, Ann. of Phys., 169, 1986, p. 191. MR846050
- [7] I.-S. Liu, Method of Lagrange multipliers for exploitation of the entropy principle, Arch. Rational Mech. Anal., 46, 1972, p. 131. Zbl0252.76003MR337164
- [8] K.O. Friedrichs, Symmetric hyperbolic linear differential equations, Comm. Pure Appl. Math., 7, 1954, p. 345. Zbl0059.08902MR62932
- [9] K.O. Friedrichs and P.D. Lax, Systems of conservation equations with a convex extension, Proc. Nat. Acad. Sci. U.S.A., 68, 1971, p. 1686. Zbl0229.35061MR285799
- [10] G. Boillat, sur l'existence et la recherche d'équation de conservation supplémentaires pour les systèmes hyperboliques, C. R. Acad. Sci. Paris, 278, Series A, 1974, p. 909. Zbl0279.35058MR342870
- [11] T. Ruggeri, Struttura dei sistemi alle derivative parziali compatibiliti con un principio di entropia, Suppl. B.U.M.I. del G.N.F.M., Fisica Matematica, 4, 1985, p. 5.
- [12] T. Ruggeri and A. Strumia, Main field and convex covariant density for quasi-linear hyperbolic systems; relativistic fluid dynamics, Ann. Inst. Henri Poincaré, Phys. Théor., 34, 1981, p.165. Zbl0473.76126MR605357
- [13] S. Pennisi and M. Trovato, Mathematical characterization of functions underlying the principle of relativity, Le Matematiche, XLIV, 1989, p. 173. Zbl0746.15004MR1143459
- [14] G. Boillat and T. Ruggeri, Wave and shock velocities in relativistic magnetohydrodynamics compared with the speed of light, Continuum Mech. Thermodyn, 1, 1989, p. 47. Zbl0760.76099MR1001436
- [15] A.M. Anile, S. Pennisi and M. Sammartino, Covariant radiation hydrodynamics, Ann. Inst. Henri Poincaré, 56 (1), 1992, p. 49. Zbl0800.76027MR1149868
- [16] K.O. Friedrichs, On the laws of relativistic electromagnetofluid dynamics, Comm. Pure Appl. Math., 27, 1974, p. 749. Zbl0308.76075MR375928
- [17] A. Fisher and D.P. Marsden, The Einstein evolution equations as a first order quasilinear symmetric hyperbolic system, Comm. Math. Phys., 28, 1972, p. 1. Zbl0247.35082MR309507
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.