A covariant and extended model for relativistic magnetofluiddynamics

Sebastiano Pennisi

Annales de l'I.H.P. Physique théorique (1993)

  • Volume: 58, Issue: 3, page 343-361
  • ISSN: 0246-0211

How to cite

top

Pennisi, Sebastiano. "A covariant and extended model for relativistic magnetofluiddynamics." Annales de l'I.H.P. Physique théorique 58.3 (1993): 343-361. <http://eudml.org/doc/76610>.

@article{Pennisi1993,
author = {Pennisi, Sebastiano},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {symmetric hyperbolic system; wave speeds; material waves; Alfvén waves; magnetoacoustic waves},
language = {eng},
number = {3},
pages = {343-361},
publisher = {Gauthier-Villars},
title = {A covariant and extended model for relativistic magnetofluiddynamics},
url = {http://eudml.org/doc/76610},
volume = {58},
year = {1993},
}

TY - JOUR
AU - Pennisi, Sebastiano
TI - A covariant and extended model for relativistic magnetofluiddynamics
JO - Annales de l'I.H.P. Physique théorique
PY - 1993
PB - Gauthier-Villars
VL - 58
IS - 3
SP - 343
EP - 361
LA - eng
KW - symmetric hyperbolic system; wave speeds; material waves; Alfvén waves; magnetoacoustic waves
UR - http://eudml.org/doc/76610
ER -

References

top
  1. [1] T. Ruggeri and A. Strumia, Convex covariant entropy density, symmetric conservative form, and shock waves in relativistic magnetohydrodynamics, J. Math. Phys., 22, 1981, p. 1824. Zbl0469.76130MR628566
  2. [2] A.M. Anile and S. Pennisi, On the mathematical structure of test relativistic magneto–fluidynamics, Ann. Inst. Henri Poincaré, 46, 1987, p. 27. Zbl0618.76132MR877994
  3. [3] A. Strumia, Wave propagation and symmetric hyperbolic systems of conservation laws with constrained field variables. I. - Wave propagation with constrained fields, Il Nuovo Cimento, 101 B, 1988, p. 1. MR955218
  4. [4] A. Strumia, Wave propagation and symmetric hyperbolic systems of conservation laws with constrained field variables. II. - Symmetric hyperbolic systems with constrained fields, Il Nuovo Cimento, 101 B, 1988, p. 19. MR955219
  5. [5] I.-S. Liu and I. Müller, Extended thermodynamics of classical and degenerate ideal gases, Arch. Rational Mech. Anal., 83, 1983, p. 285. Zbl0554.76014MR714978
  6. [6] I.-S. Liu, I. Mûller and T. Ruggeri, Relativistic thermodynamics of gases, Ann. of Phys., 169, 1986, p. 191. MR846050
  7. [7] I.-S. Liu, Method of Lagrange multipliers for exploitation of the entropy principle, Arch. Rational Mech. Anal., 46, 1972, p. 131. Zbl0252.76003MR337164
  8. [8] K.O. Friedrichs, Symmetric hyperbolic linear differential equations, Comm. Pure Appl. Math., 7, 1954, p. 345. Zbl0059.08902MR62932
  9. [9] K.O. Friedrichs and P.D. Lax, Systems of conservation equations with a convex extension, Proc. Nat. Acad. Sci. U.S.A., 68, 1971, p. 1686. Zbl0229.35061MR285799
  10. [10] G. Boillat, sur l'existence et la recherche d'équation de conservation supplémentaires pour les systèmes hyperboliques, C. R. Acad. Sci. Paris, 278, Series A, 1974, p. 909. Zbl0279.35058MR342870
  11. [11] T. Ruggeri, Struttura dei sistemi alle derivative parziali compatibiliti con un principio di entropia, Suppl. B.U.M.I. del G.N.F.M., Fisica Matematica, 4, 1985, p. 5. 
  12. [12] T. Ruggeri and A. Strumia, Main field and convex covariant density for quasi-linear hyperbolic systems; relativistic fluid dynamics, Ann. Inst. Henri Poincaré, Phys. Théor., 34, 1981, p.165. Zbl0473.76126MR605357
  13. [13] S. Pennisi and M. Trovato, Mathematical characterization of functions underlying the principle of relativity, Le Matematiche, XLIV, 1989, p. 173. Zbl0746.15004MR1143459
  14. [14] G. Boillat and T. Ruggeri, Wave and shock velocities in relativistic magnetohydrodynamics compared with the speed of light, Continuum Mech. Thermodyn, 1, 1989, p. 47. Zbl0760.76099MR1001436
  15. [15] A.M. Anile, S. Pennisi and M. Sammartino, Covariant radiation hydrodynamics, Ann. Inst. Henri Poincaré, 56 (1), 1992, p. 49. Zbl0800.76027MR1149868
  16. [16] K.O. Friedrichs, On the laws of relativistic electromagnetofluid dynamics, Comm. Pure Appl. Math., 27, 1974, p. 749. Zbl0308.76075MR375928
  17. [17] A. Fisher and D.P. Marsden, The Einstein evolution equations as a first order quasilinear symmetric hyperbolic system, Comm. Math. Phys., 28, 1972, p. 1. Zbl0247.35082MR309507

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.