On a model for quantum friction. I. Fermi's golden rule and dynamics at zero temperature

V. Jakšić; C. A. Pillet

Annales de l'I.H.P. Physique théorique (1995)

  • Volume: 62, Issue: 1, page 47-68
  • ISSN: 0246-0211

How to cite

top

Jakšić, V., and Pillet, C. A.. "On a model for quantum friction. I. Fermi's golden rule and dynamics at zero temperature." Annales de l'I.H.P. Physique théorique 62.1 (1995): 47-68. <http://eudml.org/doc/76668>.

@article{Jakšić1995,
author = {Jakšić, V., Pillet, C. A.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {dynamics of a quantum particle; potential linearly coupled to a bosonic field at temperature zero; massive field; complex deformation; Markovian semigroup; resonances of the full energy operator; ground state},
language = {eng},
number = {1},
pages = {47-68},
publisher = {Gauthier-Villars},
title = {On a model for quantum friction. I. Fermi's golden rule and dynamics at zero temperature},
url = {http://eudml.org/doc/76668},
volume = {62},
year = {1995},
}

TY - JOUR
AU - Jakšić, V.
AU - Pillet, C. A.
TI - On a model for quantum friction. I. Fermi's golden rule and dynamics at zero temperature
JO - Annales de l'I.H.P. Physique théorique
PY - 1995
PB - Gauthier-Villars
VL - 62
IS - 1
SP - 47
EP - 68
LA - eng
KW - dynamics of a quantum particle; potential linearly coupled to a bosonic field at temperature zero; massive field; complex deformation; Markovian semigroup; resonances of the full energy operator; ground state
UR - http://eudml.org/doc/76668
ER -

References

top
  1. [1] A. Arai, On a model of a harmonic oscillator coupled to a quantized, massless, scalar field, I. J. Math. Phys., Vol. 22, 1981, p. 2539. Zbl0473.46050MR640665
  2. [2] A. Arai, On a model of a harmonic oscillator coupled to a quantized, massless, scalar field, II. J. Math. Phys., Vol. 22, 1981, p. 2549. Zbl0473.46051MR640665
  3. [3] A. Arai, Spectral Analysis of a Quantum Harmonic Oscillator Coupled to Infinitely Many Scalar Bosons, J. Math. Anal. Appl., Vol. 140, 1989, p. 270. Zbl0667.46049MR997857
  4. [4] H. Cycon, R. Froese, W. Kirsch and B. Simon, Schrödinger Operators, Springer-Verlag, Berlin-Heidelberg, 1987. Zbl0619.47005
  5. [5] E.B. Davies, Markovian master equations, Commun. Math. Phys, Vol. 39, 1974, p. 91. Zbl0294.60080MR359633
  6. [6] E.B. Davies, Markovian master equations. II. Math. Ann., Vol. 219, 1976, p. 147. Zbl0323.60061MR395638
  7. [7] E.B. Davies, Quantum Theory of Open Systems. Academic Press, London, 1976. Zbl0388.46044MR489429
  8. [8] E.B. Ford, M. Kac and P. Mazur, Statistical Mechanics of Assemblies of Coupled Oscillators. J. Math. Phys., Vol. 6, 1965, p. 504. Zbl0127.21605MR180277
  9. [9] V. Jakšić and C. Pillet, On Model for Quantum Friction II. Fermi's golden rule at positive temperature. Preprint. Zbl0852.47038
  10. [10] V. Jakšić, C. Pillet and I.M. Sigal, Return to equilibrium in classical mechanics. In preparation. 
  11. [11] T. Okamoto and K. Yajima, Complex Scaling Technique in Nonrelativistic Massive QED. Ann. Inst. Henri Poincaré, Vol. 42, 1985, p 311. Zbl0594.58057MR797278
  12. [12] L.S. Ornestein and G.E. Uhlenbeck, On the theory of Brownian motion. Phys. Rev., Vol. 36, 1930, p. 823. JFM56.1277.03
  13. [13] M. Reed and B. Simon, Methods of Modern Mathematical Physics, II. Fourier Analysis, Self-Adjointness. Academic Press, London, 1975. Zbl0308.47002MR493420
  14. [14] M. Reed and B. Simon, Methods of Modern Mathematical Physics, IV. Analysis of Operators. Academic Press, London, 1978. Zbl0401.47001MR493421
  15. [15] B. Simon, Resonances in N-body quantum systems with dilation analytic potentials and the foundations of time-dependent perturbation theory. Ann. Math., Vol. 97, 973, p. 247. Zbl0252.47009MR353896
  16. [16] H. Spohn and R. Dümcke, Quantum Tunneling with Dissipation and the Ising Model over R. J. Stat. Phys., Vol. 41, 1985, p. 398. MR814839
  17. [17] P. Smedt, D. Dürr, J. Lebowitz and C. Liverani, Quantum System in Contact with a Thermal Enviroment: Rigorous Treatment of a Simple Model. Commun. Math. Phys., Vol. 120, 1988, p. 195. Zbl0657.60085MR973532

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.