Complex scaling technique in non-relativistic massive QED

T. Okamoto; K. Yajima

Annales de l'I.H.P. Physique théorique (1985)

  • Volume: 42, Issue: 3, page 311-327
  • ISSN: 0246-0211

How to cite

top

Okamoto, T., and Yajima, K.. "Complex scaling technique in non-relativistic massive QED." Annales de l'I.H.P. Physique théorique 42.3 (1985): 311-327. <http://eudml.org/doc/76284>.

@article{Okamoto1985,
author = {Okamoto, T., Yajima, K.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Hamiltonians of nonrelativistic massive quantum electrodynamics; Balslev- Combes; generic potentials; Fermi's golden rule},
language = {eng},
number = {3},
pages = {311-327},
publisher = {Gauthier-Villars},
title = {Complex scaling technique in non-relativistic massive QED},
url = {http://eudml.org/doc/76284},
volume = {42},
year = {1985},
}

TY - JOUR
AU - Okamoto, T.
AU - Yajima, K.
TI - Complex scaling technique in non-relativistic massive QED
JO - Annales de l'I.H.P. Physique théorique
PY - 1985
PB - Gauthier-Villars
VL - 42
IS - 3
SP - 311
EP - 327
LA - eng
KW - Hamiltonians of nonrelativistic massive quantum electrodynamics; Balslev- Combes; generic potentials; Fermi's golden rule
UR - http://eudml.org/doc/76284
ER -

References

top
  1. [1] J. Aguilar, J.M. Combes, A class of analytic perturbations for one body Schrödinger Hamiltonians, Commun. Math. Phys., t. 22, 1971, p. 269-279. Zbl0219.47011MR345551
  2. [2] S. Albeverio, An introduction to some mathematical aspects of scattering in models of quantum fields, In Scattering theory in Mathematical Physics, Lavita, J. A. and Marchand, J. P. (eds.): Dordrecht; Reidel Publishing Company, 1974. 
  3. [3] A. Arai, Selfadjointness and spectrum of Hamiltonians in non-relativistic quantum electrodynamics, J. Math. Phys., t. 22, 1981, p. 534-537. Zbl0468.47030MR611606
  4. [4] H.A. Bethe, The electromagnetic shift of energy levels, Phys. Rev., t. 72, 1947, p. 339-341. Zbl0030.42406
  5. [5] A. Grossmann, A. Tip, Hydrogen atoms interacting with a quantized radiation mode, J. Phys. A. Math. Gen., t. 13, 1980, p. 3381-3397. MR591127
  6. [6] R. Hoegh-Krohn, On the spectrum of the space cut-off: P(φ): Hamiltonian in two–space-time dimensions, Commun. Math. Phys., t. 21, 1971, p. 256-260. MR289074
  7. [7] J.M. Jauch, F. Rohrlich, The theory of photons and electrons (2nd ed.), New York, Springer, 1976. MR386478
  8. [8] T. Kato, Perturbation theory for linear operators (2nd ed.), New York, Springer, 1976. Zbl0342.47009MR407617
  9. [9] Y. Kato, N. Mugibayashi, Regular perturbation and asymptotic limits of operators in quantum field theory, Prog. Theor. Phys., t. 30, 1963, p. 103-133. MR159586
  10. [10] M. Reed, B. Simon, Method of modern mathematical physics, IV, Analysis of Operators, New York, Academic Press, 1978. Zbl0401.47001MR493421
  11. [11] B. Simon, Resonances in n-body quantum systems with dilation analytic potentials and the foundations of time-dependent perturbation theory, Ann. Math., t. 97, 1973, p. 247-274. Zbl0252.47009MR353896
  12. [12] K. Yajima, Resonances for the AC-Stark Effect, Commun. Math. Phys., t. 87, 1982, p. 331-352. Zbl0538.47010MR682111

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.