Uniqueness of bounded observables

Mirko Navara

Annales de l'I.H.P. Physique théorique (1995)

  • Volume: 63, Issue: 2, page 155-176
  • ISSN: 0246-0211

How to cite

top

Navara, Mirko. "Uniqueness of bounded observables." Annales de l'I.H.P. Physique théorique 63.2 (1995): 155-176. <http://eudml.org/doc/76691>.

@article{Navara1995,
author = {Navara, Mirko},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {expectation; uniqueness problem; -orthomodular lattices; bounded observables; quantum logic},
language = {eng},
number = {2},
pages = {155-176},
publisher = {Gauthier-Villars},
title = {Uniqueness of bounded observables},
url = {http://eudml.org/doc/76691},
volume = {63},
year = {1995},
}

TY - JOUR
AU - Navara, Mirko
TI - Uniqueness of bounded observables
JO - Annales de l'I.H.P. Physique théorique
PY - 1995
PB - Gauthier-Villars
VL - 63
IS - 2
SP - 155
EP - 176
LA - eng
KW - expectation; uniqueness problem; -orthomodular lattices; bounded observables; quantum logic
UR - http://eudml.org/doc/76691
ER -

References

top
  1. [1] E.G. Beltrametti and G. Cassinelli, The logic of quantum mechanics, Addison-Wesley, Reading, Massachusetts, 1981. Zbl0504.03026MR635780
  2. [2] G. Chevalier, Commutators and decompositions of orthomodular lattices, Order, Vol. 6, 1989, pp. 181-194. Zbl0688.06006MR1031654
  3. [3] M. Dichtl, Astroids and pastings, Algebra Universalis, Vol. 18, 1981, pp. 380-385. Zbl0546.06007MR745498
  4. [4] R.J. Greechie, Orthomodular lattices admitting no states, J. Combin. Theory Ser. A, Vol. 10, 1971, pp. 119-132. Zbl0219.06007MR274355
  5. [5] S.P. Gudder, Uniqueness and existence properties of bounded observables, Pacific J. Math., Vol. 19, 1966, pp. 81-93. Zbl0149.23603MR201146
  6. [6] S.P. Guddfr, Some unsolved problems in quantum logics. In A. R. MARLOW (ed.): Mathematical Foundations of Quantum Theory, Academic Press, New York, 1978. MR495813
  7. [7] S.P. Gudder, Stochastic Methods in Quantum Mechanics, North Holland, New York, 1979. Zbl0439.46047MR543489
  8. [8] S.P. Gudder, Expectation and transitional probability, Int. J. Theor. Phys., Vol. 20, 1981, pp. 383-395. Zbl0483.03041MR630220
  9. [9] G. Kalmbach, Orthomodular lattices, Academic Press, London, 1983. Zbl0512.06011MR716496
  10. [10] R. Mayet, M. Navara and V. Rogalewicz, Construction of orthomodular lattices with strongly order-determining sets of states. To appear. Zbl1012.06011
  11. [11] M. Navara and V. Rogalewicz, The pasting constructions for orthomodular posets, Math. Nachrichten, Vol. 154, 1991, pp. 157-168. Zbl0767.06009MR1138377
  12. [12] P. Pták and S. Pulmannová, Orthomodular structures as quantum logics, Kluwer Academic Publishers, Dordrecht/Boston/London, 1991. Zbl0743.03039MR1176314
  13. [13] P. Pták and V. Rogalewicz, Measures on orthomodular partially ordered sets, J. Pure Appl. Algebra, Vol. 28, 1983, pp. 75-80. Zbl0507.06008MR692854
  14. [14] P. Pták and V. Rogalewicz, Regularly full logics and the uniqueness problem for observables, Ann. Inst. H. Poincaré, Vol. 38, 1983, pp. 69-74. Zbl0519.03051MR700701
  15. [15] V. Rogalewicz, A note on the uniqueness problem for observables. Acta Polytechnica IV, Vol. 6, 1984, pp. 107-111. MR907552
  16. [16] V. Rogalewicz, On the uniqueness problem for quite full logics, Ann. Inst. Henri Poincaré, Vol. 41, 1984, pp. 445-451. Zbl0581.03044MR777916
  17. [17] C. Schindler, Example of a full initial orthomodular poset without the uniqueness property. Preprint, 1983. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.