Uniqueness of bounded observables
Annales de l'I.H.P. Physique théorique (1995)
- Volume: 63, Issue: 2, page 155-176
- ISSN: 0246-0211
Access Full Article
topHow to cite
topNavara, Mirko. "Uniqueness of bounded observables." Annales de l'I.H.P. Physique théorique 63.2 (1995): 155-176. <http://eudml.org/doc/76691>.
@article{Navara1995,
author = {Navara, Mirko},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {expectation; uniqueness problem; -orthomodular lattices; bounded observables; quantum logic},
language = {eng},
number = {2},
pages = {155-176},
publisher = {Gauthier-Villars},
title = {Uniqueness of bounded observables},
url = {http://eudml.org/doc/76691},
volume = {63},
year = {1995},
}
TY - JOUR
AU - Navara, Mirko
TI - Uniqueness of bounded observables
JO - Annales de l'I.H.P. Physique théorique
PY - 1995
PB - Gauthier-Villars
VL - 63
IS - 2
SP - 155
EP - 176
LA - eng
KW - expectation; uniqueness problem; -orthomodular lattices; bounded observables; quantum logic
UR - http://eudml.org/doc/76691
ER -
References
top- [1] E.G. Beltrametti and G. Cassinelli, The logic of quantum mechanics, Addison-Wesley, Reading, Massachusetts, 1981. Zbl0504.03026MR635780
- [2] G. Chevalier, Commutators and decompositions of orthomodular lattices, Order, Vol. 6, 1989, pp. 181-194. Zbl0688.06006MR1031654
- [3] M. Dichtl, Astroids and pastings, Algebra Universalis, Vol. 18, 1981, pp. 380-385. Zbl0546.06007MR745498
- [4] R.J. Greechie, Orthomodular lattices admitting no states, J. Combin. Theory Ser. A, Vol. 10, 1971, pp. 119-132. Zbl0219.06007MR274355
- [5] S.P. Gudder, Uniqueness and existence properties of bounded observables, Pacific J. Math., Vol. 19, 1966, pp. 81-93. Zbl0149.23603MR201146
- [6] S.P. Guddfr, Some unsolved problems in quantum logics. In A. R. MARLOW (ed.): Mathematical Foundations of Quantum Theory, Academic Press, New York, 1978. MR495813
- [7] S.P. Gudder, Stochastic Methods in Quantum Mechanics, North Holland, New York, 1979. Zbl0439.46047MR543489
- [8] S.P. Gudder, Expectation and transitional probability, Int. J. Theor. Phys., Vol. 20, 1981, pp. 383-395. Zbl0483.03041MR630220
- [9] G. Kalmbach, Orthomodular lattices, Academic Press, London, 1983. Zbl0512.06011MR716496
- [10] R. Mayet, M. Navara and V. Rogalewicz, Construction of orthomodular lattices with strongly order-determining sets of states. To appear. Zbl1012.06011
- [11] M. Navara and V. Rogalewicz, The pasting constructions for orthomodular posets, Math. Nachrichten, Vol. 154, 1991, pp. 157-168. Zbl0767.06009MR1138377
- [12] P. Pták and S. Pulmannová, Orthomodular structures as quantum logics, Kluwer Academic Publishers, Dordrecht/Boston/London, 1991. Zbl0743.03039MR1176314
- [13] P. Pták and V. Rogalewicz, Measures on orthomodular partially ordered sets, J. Pure Appl. Algebra, Vol. 28, 1983, pp. 75-80. Zbl0507.06008MR692854
- [14] P. Pták and V. Rogalewicz, Regularly full logics and the uniqueness problem for observables, Ann. Inst. H. Poincaré, Vol. 38, 1983, pp. 69-74. Zbl0519.03051MR700701
- [15] V. Rogalewicz, A note on the uniqueness problem for observables. Acta Polytechnica IV, Vol. 6, 1984, pp. 107-111. MR907552
- [16] V. Rogalewicz, On the uniqueness problem for quite full logics, Ann. Inst. Henri Poincaré, Vol. 41, 1984, pp. 445-451. Zbl0581.03044MR777916
- [17] C. Schindler, Example of a full initial orthomodular poset without the uniqueness property. Preprint, 1983.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.