An adiabatic theorem for singularly perturbed hamiltonians

Alain Joye

Annales de l'I.H.P. Physique théorique (1995)

  • Volume: 63, Issue: 2, page 231-250
  • ISSN: 0246-0211

How to cite

top

Joye, Alain. "An adiabatic theorem for singularly perturbed hamiltonians." Annales de l'I.H.P. Physique théorique 63.2 (1995): 231-250. <http://eudml.org/doc/76694>.

@article{Joye1995,
author = {Joye, Alain},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {adiabatic approximation; Hamiltonian; gap assumption; time-dependent perturbation},
language = {eng},
number = {2},
pages = {231-250},
publisher = {Gauthier-Villars},
title = {An adiabatic theorem for singularly perturbed hamiltonians},
url = {http://eudml.org/doc/76694},
volume = {63},
year = {1995},
}

TY - JOUR
AU - Joye, Alain
TI - An adiabatic theorem for singularly perturbed hamiltonians
JO - Annales de l'I.H.P. Physique théorique
PY - 1995
PB - Gauthier-Villars
VL - 63
IS - 2
SP - 231
EP - 250
LA - eng
KW - adiabatic approximation; Hamiltonian; gap assumption; time-dependent perturbation
UR - http://eudml.org/doc/76694
ER -

References

top
  1. [AHS] J. Avron, J. Howland and B. Simon, Adiabatic Theorems for Dense Point Spectra, Commun. Math. Phys., Vol. 128, 1990, pp. 497-507. Zbl0711.35101MR1045880
  2. [ASY] J. Avron, R. Seiler and L.G. Yaffe, Adiabatic Theorems and Applications to the Quantum Hall Effect, Commun. Math. Phys., Vol. 110, 1987, pp. 33-49. Zbl0626.58033MR885569
  3. [BF] M. Born and V. Fock, Beweis des Adiabatensatzes, Zeit. f. Phys., Vol. 51, 1928, pp. 165-169. Zbl54.0994.03JFM54.0994.03
  4. [JP1] A. Joye and C. Pfister, Quantum Adiabatic Evolution, in "Leuven Conference Proceedings; On the Three Levels Micro-, Meso, and Macro-approaches in Physics", M. FANNES, C. MEAS, A. VERBEURE, Eds., Plenum, New York, 1994, pp. 139-148. Zbl0884.47053
  5. [JP2] A. Joye and C. Pfister, Exponentially Small Adiabatic Invariant for the Schroedinger Equation, Commun. Math. Phys., Vol. 140, 1991, pp. 15-41. Zbl0755.35104MR1124257
  6. [Ka1] T. Kato, On the Adiabatic Theorem of Quantum Mechanics, J. Phys. Soc. Japan, Vol. 5, 1950, pp. 435-439. 
  7. [Ka2] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, Heidelberg, New York, 1966. Zbl0148.12601MR203473
  8. [Kr] S.G. Krein, Linear Differential Equations in Banach Spaces, American Mathematical Society, Vol. 29, Providence, 1971. MR342804
  9. [N1] G. Nenciu, On the Adiabatic Theorem of Quantum Mechanics, J. Phys.A, Vol. 13, 1980, L15-L18. Zbl0435.47025MR558631
  10. [N2] G. Nenciu, Asymptotic Invariant Subspaces, Adiabatic Theorems and Block Diagonalisation, in "Recent Developments in Quantum Mechanics", A. BOUTET DE MONVEL et al., Eds., Kluver Academic Publishers, Dordrecht, 1991. Zbl0726.34077MR1189402
  11. [N3] G. Nenciu, Adiabatic Theorems and Spectral Concentration, Commun. Math. Phys., Vol. 82, 1981, pp. 121-135. Zbl0493.47009MR638516
  12. [RS] M. Reed and B. Simon, Methods of Modem Mathematical Physics, II Fourier Analysis, Self-Adjointness, Academic Press, New York, San Francisco, London, 1975. Zbl0308.47002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.