Arithmetic features of rational conformal field theory

Ivan T. Todorov

Annales de l'I.H.P. Physique théorique (1995)

  • Volume: 63, Issue: 4, page 427-453
  • ISSN: 0246-0211

How to cite

top

Todorov, Ivan T.. "Arithmetic features of rational conformal field theory." Annales de l'I.H.P. Physique théorique 63.4 (1995): 427-453. <http://eudml.org/doc/76706>.

@article{Todorov1995,
author = {Todorov, Ivan T.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {rational conformal field theory; braid matrices structure constants; JFM 05.0249.01; Schwarz problem; Knizhnik-Zamolodchikov equation; monodromy representation; mapping class group; cyclotomic field; Galois automorphisms},
language = {eng},
number = {4},
pages = {427-453},
publisher = {Gauthier-Villars},
title = {Arithmetic features of rational conformal field theory},
url = {http://eudml.org/doc/76706},
volume = {63},
year = {1995},
}

TY - JOUR
AU - Todorov, Ivan T.
TI - Arithmetic features of rational conformal field theory
JO - Annales de l'I.H.P. Physique théorique
PY - 1995
PB - Gauthier-Villars
VL - 63
IS - 4
SP - 427
EP - 453
LA - eng
KW - rational conformal field theory; braid matrices structure constants; JFM 05.0249.01; Schwarz problem; Knizhnik-Zamolodchikov equation; monodromy representation; mapping class group; cyclotomic field; Galois automorphisms
UR - http://eudml.org/doc/76706
ER -

References

top
  1. [AGO87] J.R.C. Arcuri, J.F. Gomez and D. Olive, Conformal subalgebras and symmetric spaces, Nucl. Phys., Vol. B285, 1987, pp. 327-339. MR894422
  2. [BB87] F.A. Bais and P.G. Bouwknegt, A classification of subgroup truncations of the bosonic string, Nucl. Phys., Vol. B279, 1987, pp. 561-570. MR867243
  3. [Ber87] D. Bernard, String characters from Kac-Moody automorphisms, Nucl. Phys., Vol. B288, 1987, pp. 628-648. MR892062
  4. [BH89] F. Beukers and G. Heckman, Monodromy for the hypergeometric function nFn-1, Invent. Math., Vol. 95, 1989, pp. 325-354; F. Beukers, Differential Galois theory, in [Wald92], pp. 413-439. Zbl0663.30044MR974906
  5. [Bir74] J.S. Birman, Braids, Links and Mapping Class Groups, Ann. of Math. Studies, Vol. 82, Princeton Univ. Press, 1974. MR375281
  6. [BN87] P. Bouwknegt and W. Nahm, Realization of the exceptional modular invariant A1(1) partition functions, Phys. Lett., Vol. B184, 1987, pp. 359-362. MR882316
  7. [CIZ87] A. Cappelli, C. Itzykson and J.-B. Zuber, The A-D-E classification of minimal and A1(1) conformal invariant theories, Commun. Math. Phys., Vol. 113, 1987, pp. 1-26. Zbl0639.17008MR918402
  8. [Chr87] P. Christe, On exceptional operator algebras in the conformally invariant SU (2) Wess-Zumino-Witten model, Phys. Lett., Vol. 189B, 1987, pp. 215-220. MR919135
  9. [ChrF87] P. Christe and R. Flüme, The four point correlation functions of all primary fields of the d = 2 conformally invariant SU (2) σ-model with Wess-Zumino term, Nucl. Phys., Vol. B282, 1987, pp. 466-494. MR873035
  10. [CW92] P.B. Cohen and J. Wolfart, Algebraic Appell-Lauricella functions, Analysis, Vol. 12, 1992, pp. 359-376. Zbl0761.33007MR1182636
  11. [CG94] A. Coste and T. Gannon, Galois symmetry in RCFT, Phys. Lett., Vol. B323, 1994, pp. 316-321. 
  12. [CM57] H.S.M. Coxeter and W.O.J. Moser, Generators and Relations for Discrete Groups, Springer, Berlin et al., 1957. Zbl0077.02801MR88489
  13. [deBG91] J. de Boer and J. Goeree, Markov traces and II1 factors in conformal field theory, Commun. Math. Phys., Vol. 139, 1991, pp. 267-304. Zbl0760.57002MR1120140
  14. [DHR69] S. Doplicher, R. Haag and J.E. Roberts, Fields, observables and gauge transformations, I and II, Commun. Math. Phys., Vol. 13, 1969, pp. 1-23 and Vol. 15, 1969, pp.173-200; S. Doplicher and J.E. Roberts, Why there is a field algebra with a compact gauge group describing the superselection structure in particle physics, Commun. Math. Phys., Vol. 131, 1991, pp. 51- 107. Zbl0175.24704MR258394
  15. [DF84] Vl.S. Dotsenko and V.A. Fateev, Conformal algebra and multipoint correlation functions in 2D statistical models, Nucl. Phys., Vol. B240, 1984, pp. 312-348. MR762194
  16. [FFK89] G. Felder, J. Fröhlich and G. Keller, Braid matrices and structure constants for minimal conformal models, Commun. Math. Phys., Vol. 124, 1989, pp. 647-664. Zbl0696.17009MR1014118
  17. [FGK88] G. Felder, K. Gawedzki and A. Kupiainen, Spectra of Wess-Zumino-Witten models with arbitrary simple groups, Commun. Math. Phys., Vol. 117, 1988, pp. 127-158; see also Nucl. Phys., Vol. B299, 1988, pp. 355-366. Zbl0642.22005MR946997
  18. [FG-RSS94] J. Fuchs, B. Gato-Rivera, B. Schellekens and Ch. Schweigert, Modular invariants and fusion rule automorphisms from Galois theory, Phys. Lett., Vol. B334, 1994, pp. 113-120. MR1290075
  19. [FK89] J. Fuchs and A. Klemm, The computation of the operator algebra in non-diagonal conformal field theories, Ann. Phys. (N.Y.), Vol. 194, 1989, pp. 303-335. Zbl0699.46052MR1015797
  20. [FK90] J. Fuchs, A. Klemm and C. Scheich, The operator algebra of the E8 type SU2 WZW theory, Zeitschr. f. Phys., Vol. C46, 1990, pp. 71-74. 
  21. [FSS94] J. Fuchs, B. Schellekens and Ch. Schweigert, Quasi-Galois symmetries of the modular S-matrix, Amsterdam preprint, NIKHEF-H/94-37, hep-th/94 12 009, Commun. Math. Phys. (to appear). MR1374421
  22. [FST89] P. Furlan, G. Sotkov and I.T. Todorov, Two-dimensional conformal quantum field theory, Riv. Nuovo Cim., Vol. 12, 6, 1989, pp. 1-202. MR1008223
  23. [FST91] P. Furlan, Ya. S. Stanev and I.T. Todorov, Coherent state operators and n-point invariants for Uq (sl(2)), Lett. Math. Phys., Vol. 22, 1991, pp. 307-319. Zbl0736.17013MR1131755
  24. [Gan94] T. Gannon, The classification of su (m)k automorphism invariants, IHES, Bures-sur-Yvette, preprint, hep-th/94 08 119; T. Gannon, C. Jakovljevic and M.A. Walton, Lie group weight multiplicities from conformal field theory, Bures-sur-Yvette, preprint, IHES/P/94/58. 
  25. [G088] P. GODDARD and D. OLIVE (eds), Kac-Moody and Virasoro Algebras, A Reprint Volume for Physicists, World Scientific, Singapore, 1988. Zbl0661.17001MR966668
  26. [HPT91] L.K. Hadjiivanov, R.R. Paunov and I.T. Todorov, Quantum group extended chiral p-models, Nucl. Phys., Vol. B356, 1991, pp. 387-438. MR1105300
  27. [Jones83] V. Jones, Braid groups, Hecke algebras and type II1 factors, in: Geometric Methods in Operator Algebras, Kyoto, 1983, Pitman Res. Notes in Math., Vol. 123, 1986, pp. 242-273. Zbl0659.46054MR866500
  28. [Kac85] V.G. Kac, Infinite-Dimensional Lie Algebras, Second edition (Cambridge Univ. Press, 1985); Third edition (ibid., 1990). MR1104219
  29. [KW94] V.G. Kac and M. Wakimoto, Integrable highest weight modules over affine superalgebras and number theory, in: Lie Theory and Geometry, in Honor of Bertram Kostant, Progress in Mathematics, Vol. 123, Birkhäuser, Boston et al., 1994, pp. 415-456. Zbl0854.17028MR1327543
  30. [KZ84] V.G. Knizhnik and A.B. Zamolodchikov, Current algebra and Wess-Zumino model in two dimensions, Nucl. Phys., Vol. B247, 1984, pp. 83-103. Zbl0661.17020MR853258
  31. [Mack88] G. Mack, Introduction to conformal invariant quantum field theory in two and more dimensions, in: Nonperturbative Quantum Field Theory, G.'t Hooft et al., eds. Plenum Press, N.Y., 1988, pp. 353-383. MR1008284
  32. [MST92] L. Michel, Ya.S. Stanev and I.T. Todorov, D-E classification of the local extensions of the su2 current algebras, Teor. Mat. Fiz., Vol. 92, 1992, pp. 507- 521; Theor. Math. Phys., Vol. 92, 1993, p. 1063; Ya.S. Stanev and I.T. Todorov, Local 4-point functions and the Knizhnik-Zamolodchikov equation, in: Mathematical Aspects of Conformal and Topological Field Theories and Quantum Groups, P. J. SALLY Jr., M. FLATO, J. LEPOWSKY, N. RESHETIKHIN and G. J. ZUCKERMAN, eds., AMS-IMS-SIAM Summer Research Conference, June 1992, Mount Holyoke College, Contemporary Mathematics, Vol. 175, 1994, pp. 249-267. Zbl0813.17022MR1225795
  33. [MS89] G. Moore and N. Seiberg, Classical and quantum conformal field theory, Commun. Math. Phys., Vol. 123, 1989, pp. 177-254. Zbl0694.53074MR1002038
  34. [Pas87] V. Pasquier, Operator content of the A-D-E lattice models, J. Phys. A: Math. Gen., Vol. 120, 1987, pp. 5707-5717. MR924736
  35. [Pet89] V.B. Petkova, Structure constants of the (A, D) minimal c &lt; 1 conformal models, Phys. Lett., Vol. 225, 1989, pp. 357-362. 
  36. [PZ95] V.B. Petkova and J.-B. Zuber, On structure constants of sl(2) theories, Nucl. Phys., Vol. B438, 1995, pp. 347-372. Zbl1052.81613MR1321528
  37. [RS89] K.-H. Rehren and B. Schroer, Einstein causality and Artin braids, Nucl. Phys., Vol. B312, 1989, pp.715-750. MR980192
  38. [RST94] K.-H. Rehren, Y.S. Stanev and I.T. Todorov, Characterizing invariants for local extensions of current algebras, Hamburg-Vienna preprint DESY 94-164, ESI 132, 1994, hep-th/94 09 165; Commun. Math. Phys. MR1370082
  39. [RTW93] Ph. Ruelle, E. Thirran and J. Weyers, Implications of an arithmetical symmetry of the commutant for modular invariants, Nucl. Phys., Vol. B402, 1993, pp. 693-708. Zbl1043.81698MR1236194
  40. [SST95] H. Sazdjian, Ya.S. Stanev and I.T. Todorov, SU3 coherent state operators and invariant correlation functions and their quantum group counterparts, J. Math. Phys., Vol. 36, 1995, pp. 2030-2052. Zbl0838.17037MR1322683
  41. [SW86] A.N. Schellekens and N.P. Warner, Conformal subalgebras of Kac-Moody algebras, Phys. Rev., Vol. D34, 1986, pp. 3092-3101. MR867023
  42. [SY89] A.N. Schellekens and S. Yankielowicz, Extended chiral algebras and modular invariant partition functions, Nucl. Phys., Vol. B327, 1989, pp. 673-703; Simple currents, modular invariants and fixed points, Int. J. Mod. Phys., Vol. A5, 1990, pp. 2903-2952. MR1030445
  43. [Sch74] B. Schroer, A trip to scalingland, Proceedings of the V Brazilian Symposium on Theoretical Physics, Rio de Janeiro, Jan. 1974, ed. by E. FERREIRA (Livros Tecnios e Cientificos Editora S.A., Rio de Janeiro, 1975). 
  44. [Sch1873] H.A. Schwarz, Über diejenigen Fälle in welhen die Gaußische hypergeometrische Reihe eine algebraische Funktion ihres vierten Elements darstelt, Reine Angew. Math. (Crelle J.), Vol. 75, 1873, pp. 292-335. JFM05.0146.03
  45. [Slo83] P. Slodowy, Platonic solids, Kleinian singularities and Lie groups, Lect. Notes in Math., Vol. 1008, Springer, Berlin, 1983, pp. 102-138. Zbl0516.14002MR723712
  46. [ST94] Ya.S. Stanev and I.T. Todorov, On Schwarz problem for the sû2 Knizhnik-Zamolodchikov equation, Vienna preprint, ESI 121, 1994; Lett. Math. Phys., Vol. 35, 1995, pp. 123-134. Zbl0860.17025MR1347875
  47. [ST95] Ya.S. Stanev and I.T. Todorov, Monodromy representations of the mapping class group Bn for the su2 Knizhnik-Zamolodchikov equation, 1995, Schladming lecture, Vienna preprint, ESI 233, 1995. MR1347875
  48. [STH92] Ya.S. Stanev and I.T. Todorov, L.K. Hadjiivanov, Braid invariant rational conformal models with a quantum group symmetry, Phys. Lett., Vol. B276, 1992, pp. 87-94; and in: Quantum Symmetries, H.-D. DOEBNER and V. K. DOBREV eds., World Scientific, Singapore, 1993, pp. 24-40. MR1153195
  49. [Tod94] I.T. Todorov, What are we learning from 2-dimensional conformal models? in: Mathematical Physics Towards the 21st Century, R. N. SEN and A. GERSTEN, eds., Ben-Gurion University of the Negev Press, 1994, pp. 160-176. 
  50. [TK88] A. Tsuchiya and Y. Kanie, Vertex operators in the conformal field theory on P1 and monodromy representations of the braid group, in: Conformal Field Theory and Solvable Lattice Models, Advanced Studies in Pure Mathematics, Vol. 16, 1988, pp. 297-372; Lett. Math. Phys., Vol. 13, 1987, pp. 303-312. Zbl0661.17021MR895293
  51. [Wald92] M. Waldschmidt et al., (eds.), From Number Theory to Physics, Springer, Berlin, 1992. Zbl0784.00021MR1221099
  52. [ZF86] A.B. Zamolodchikov and V.A. Fateev, Operator algebra and correlation functions in the two-dimensional SU (2) x SU (2) chiral Wess-Zumino model, Yad. Fiz., Vol. 43, 1986, pp. 1031-1044 (transl: Sov. J. Nucl. Phys., Vol. 43, 1986, pp. 657-664). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.