Nonexistence of minimal blow-up solutions of equations i u t = - Δ u - k ( x ) | u | 4 / N u in N

Franck Merle

Annales de l'I.H.P. Physique théorique (1996)

  • Volume: 64, Issue: 1, page 33-85
  • ISSN: 0246-0211

How to cite

top

Merle, Franck. "Nonexistence of minimal blow-up solutions of equations $iu_t = - \Delta u-k(x)|u|^{4/N} u$ in $\mathbb {R}^N$." Annales de l'I.H.P. Physique théorique 64.1 (1996): 33-85. <http://eudml.org/doc/76708>.

@article{Merle1996,
author = {Merle, Franck},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {nonlinear Schrödinger equation with critical exponent; concentration properties; blow-up time; black holes},
language = {eng},
number = {1},
pages = {33-85},
publisher = {Gauthier-Villars},
title = {Nonexistence of minimal blow-up solutions of equations $iu_t = - \Delta u-k(x)|u|^\{4/N\} u$ in $\mathbb \{R\}^N$},
url = {http://eudml.org/doc/76708},
volume = {64},
year = {1996},
}

TY - JOUR
AU - Merle, Franck
TI - Nonexistence of minimal blow-up solutions of equations $iu_t = - \Delta u-k(x)|u|^{4/N} u$ in $\mathbb {R}^N$
JO - Annales de l'I.H.P. Physique théorique
PY - 1996
PB - Gauthier-Villars
VL - 64
IS - 1
SP - 33
EP - 85
LA - eng
KW - nonlinear Schrödinger equation with critical exponent; concentration properties; blow-up time; black holes
UR - http://eudml.org/doc/76708
ER -

References

top
  1. [1] H. Berestycki and P.L. Lions, Non linear scalar field equations I. Existence of a ground state; II. Existence of infinitely many solutions, Arch. Rational Mech. Anal., Vol. 82, 1983, pp. 313-375. Zbl0533.35029
  2. [1'] T. Cazenave and F. Weissler, The Cauchy problem in HS for nonlinear Schrödinger equation, preprint. Zbl0696.35153
  3. [2] J. Ginibre and G. Velo, On a class of nonlinear Schrödingre equations I, II. The Cauchy problem, general case, J. Func. Anal., Vol. 32, 1979, pp. 1-71. Zbl0396.35028MR533219
  4. [3] L. Glangetas and F. Merle, Existence of self-similar blow-up solutions for Zakharov equation in dimension two, Part I, Comm. Math. Phys., to appear. Zbl0808.35137MR1262194
  5. [4] L. Glangetas and F. Merle, Concentration properties of blow-up solutions and instability results for Zakharov equation in dimension two, Part II, Comm. Math. Phys., to appear. Zbl0808.35138MR1262202
  6. [5] R.T. Glassey, On the blowing-up of solutions to the Cauchy problem for the nonlinear Schrödinger equation, J. Math. Phys., Vol. 18, 1977, pp. 1794-1797. Zbl0372.35009MR460850
  7. [6] T. Kato, On nonlinear Schrödinger equations, Ann. Inst. Henri Poincaré, Physique Théorique, Vol. 49, 1987, pp. 113-129. Zbl0632.35038MR877998
  8. [7] M.K. Kwong, Uniqueness of positive solution of Δu - u + up = 0 in RN, Arch. Rational Mech. Anal., Vol. 105, 1989, pp. 243-266. Zbl0676.35032MR969899
  9. [8] M. Landman, G.C. Papanicolaou, C. Sulem, P.L. Sulem and X.P. Wang, Stability of isotropic self-similar dynamics for scalar collapse, Phys. Rev. A, Vol. 46, 1992, pp. 4869-7876. 
  10. [9] F. Merle, Limit behavior of satured approximations of nonlinear Schrödinger equation, Comm. Math. Phys., Vol. 149, 1992, pp. 377-414. Zbl0756.35094MR1186035
  11. [9'] F. Merle, Construction of solutions with exactly k blow-up points for the Schrödinger equation with critical nonlinearity, Comm. Math. Phys., Vol. 129, 1990, pp. 223-240. Zbl0707.35021MR1048692
  12. [10] F. Merle, Determination of blow-up solutions with minimal mass for Schrödinger equation with critical power, Duke Math. J., Vol. 69, 1993, pp. 427-454. Zbl0808.35141MR1203233
  13. [11] F. Merle, On uniqueness and continuation properties after blow-up time of self-similar solutions of nonlinear Schrödinger equation with critical exponent and critical mass, Comm. Pure Appl. Math., Vol. 45, 1992, pp. 203-254. Zbl0767.35084MR1139066
  14. [12] F. Merle and Y. Tsutsumi, L2-concentration of blow-up solutions for the non-linear Schrödinger equation with the critical power nonlinearity, J. Diff. Eq., Vol. 84, 1990, pp. 205-214. Zbl0722.35047MR1047566
  15. [13] T. Ozawa and Y. Tsutsumi, Blow-up for H1 solution for the nonlinear Schrödinger equation, preprint 
  16. [14] G.C. Papanicolaou, C. Sulem, P.L. Sulem and X.P. Wang, Singular solutions of the Zakharov equations for Langmuir turbulence, Phys. Fluids B3, 1991, pp. 969-980. MR1097565
  17. [15] V.V. Sobolev, V.S. Synach and V.E. Zakharov, Character of the singularity and stochastic phenomena in self-focusing, Zh. Eksp. Theor. Fiz, Pis'ma Red, Vol. 14, 1971, pp. 390-393. 
  18. [16] W.A. Strauss, Existence of solitary waves in hiher dimensions, Comm. Math. Phys., Vol. 55, 1977, p. 149-162. Zbl0356.35028MR454365
  19. [17] M.I. Weinstein, The nonlinear Schrödinger equation singularity formation stability and dispersion, AMS-SIAM Conference on the Connection between Infinite Dimensional and Finite Dimensional Dynamical Systems, July 1987. Zbl0703.35159
  20. [18] M.I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys., Vol. 87, 1983, pp. 567-576. Zbl0527.35023MR691044
  21. [19] M.I. Weinstein, On the structure and formation of singularities in solutions to the nonlinear dispersive evolution equations, Comm. Partial Diff. Eq., Vol. 11, 1986, pp. 545-565. Zbl0596.35022MR829596

NotesEmbed ?

top

You must be logged in to post comments.