# Nonexistence of minimal blow-up solutions of equations $i{u}_{t}=-\Delta u-k\left(x\right){\left|u\right|}^{4/N}u$ in ${\mathbb{R}}^{N}$

Annales de l'I.H.P. Physique théorique (1996)

- Volume: 64, Issue: 1, page 33-85
- ISSN: 0246-0211

## Access Full Article

top## How to cite

topMerle, Franck. "Nonexistence of minimal blow-up solutions of equations $iu_t = - \Delta u-k(x)|u|^{4/N} u$ in $\mathbb {R}^N$." Annales de l'I.H.P. Physique théorique 64.1 (1996): 33-85. <http://eudml.org/doc/76708>.

@article{Merle1996,

author = {Merle, Franck},

journal = {Annales de l'I.H.P. Physique théorique},

keywords = {nonlinear Schrödinger equation with critical exponent; concentration properties; blow-up time; black holes},

language = {eng},

number = {1},

pages = {33-85},

publisher = {Gauthier-Villars},

title = {Nonexistence of minimal blow-up solutions of equations $iu_t = - \Delta u-k(x)|u|^\{4/N\} u$ in $\mathbb \{R\}^N$},

url = {http://eudml.org/doc/76708},

volume = {64},

year = {1996},

}

TY - JOUR

AU - Merle, Franck

TI - Nonexistence of minimal blow-up solutions of equations $iu_t = - \Delta u-k(x)|u|^{4/N} u$ in $\mathbb {R}^N$

JO - Annales de l'I.H.P. Physique théorique

PY - 1996

PB - Gauthier-Villars

VL - 64

IS - 1

SP - 33

EP - 85

LA - eng

KW - nonlinear Schrödinger equation with critical exponent; concentration properties; blow-up time; black holes

UR - http://eudml.org/doc/76708

ER -

## References

top- [1] H. Berestycki and P.L. Lions, Non linear scalar field equations I. Existence of a ground state; II. Existence of infinitely many solutions, Arch. Rational Mech. Anal., Vol. 82, 1983, pp. 313-375. Zbl0533.35029
- [1'] T. Cazenave and F. Weissler, The Cauchy problem in HS for nonlinear Schrödinger equation, preprint. Zbl0696.35153
- [2] J. Ginibre and G. Velo, On a class of nonlinear Schrödingre equations I, II. The Cauchy problem, general case, J. Func. Anal., Vol. 32, 1979, pp. 1-71. Zbl0396.35028MR533219
- [3] L. Glangetas and F. Merle, Existence of self-similar blow-up solutions for Zakharov equation in dimension two, Part I, Comm. Math. Phys., to appear. Zbl0808.35137MR1262194
- [4] L. Glangetas and F. Merle, Concentration properties of blow-up solutions and instability results for Zakharov equation in dimension two, Part II, Comm. Math. Phys., to appear. Zbl0808.35138MR1262202
- [5] R.T. Glassey, On the blowing-up of solutions to the Cauchy problem for the nonlinear Schrödinger equation, J. Math. Phys., Vol. 18, 1977, pp. 1794-1797. Zbl0372.35009MR460850
- [6] T. Kato, On nonlinear Schrödinger equations, Ann. Inst. Henri Poincaré, Physique Théorique, Vol. 49, 1987, pp. 113-129. Zbl0632.35038MR877998
- [7] M.K. Kwong, Uniqueness of positive solution of Δu - u + up = 0 in RN, Arch. Rational Mech. Anal., Vol. 105, 1989, pp. 243-266. Zbl0676.35032MR969899
- [8] M. Landman, G.C. Papanicolaou, C. Sulem, P.L. Sulem and X.P. Wang, Stability of isotropic self-similar dynamics for scalar collapse, Phys. Rev. A, Vol. 46, 1992, pp. 4869-7876.
- [9] F. Merle, Limit behavior of satured approximations of nonlinear Schrödinger equation, Comm. Math. Phys., Vol. 149, 1992, pp. 377-414. Zbl0756.35094MR1186035
- [9'] F. Merle, Construction of solutions with exactly k blow-up points for the Schrödinger equation with critical nonlinearity, Comm. Math. Phys., Vol. 129, 1990, pp. 223-240. Zbl0707.35021MR1048692
- [10] F. Merle, Determination of blow-up solutions with minimal mass for Schrödinger equation with critical power, Duke Math. J., Vol. 69, 1993, pp. 427-454. Zbl0808.35141MR1203233
- [11] F. Merle, On uniqueness and continuation properties after blow-up time of self-similar solutions of nonlinear Schrödinger equation with critical exponent and critical mass, Comm. Pure Appl. Math., Vol. 45, 1992, pp. 203-254. Zbl0767.35084MR1139066
- [12] F. Merle and Y. Tsutsumi, L2-concentration of blow-up solutions for the non-linear Schrödinger equation with the critical power nonlinearity, J. Diff. Eq., Vol. 84, 1990, pp. 205-214. Zbl0722.35047MR1047566
- [13] T. Ozawa and Y. Tsutsumi, Blow-up for H1 solution for the nonlinear Schrödinger equation, preprint
- [14] G.C. Papanicolaou, C. Sulem, P.L. Sulem and X.P. Wang, Singular solutions of the Zakharov equations for Langmuir turbulence, Phys. Fluids B3, 1991, pp. 969-980. MR1097565
- [15] V.V. Sobolev, V.S. Synach and V.E. Zakharov, Character of the singularity and stochastic phenomena in self-focusing, Zh. Eksp. Theor. Fiz, Pis'ma Red, Vol. 14, 1971, pp. 390-393.
- [16] W.A. Strauss, Existence of solitary waves in hiher dimensions, Comm. Math. Phys., Vol. 55, 1977, p. 149-162. Zbl0356.35028MR454365
- [17] M.I. Weinstein, The nonlinear Schrödinger equation singularity formation stability and dispersion, AMS-SIAM Conference on the Connection between Infinite Dimensional and Finite Dimensional Dynamical Systems, July 1987. Zbl0703.35159
- [18] M.I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys., Vol. 87, 1983, pp. 567-576. Zbl0527.35023MR691044
- [19] M.I. Weinstein, On the structure and formation of singularities in solutions to the nonlinear dispersive evolution equations, Comm. Partial Diff. Eq., Vol. 11, 1986, pp. 545-565. Zbl0596.35022MR829596

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.