Equilibrium statistical mechanics of frustrated spin glasses : a survey of mathematical results

Dimitri Petritis

Annales de l'I.H.P. Physique théorique (1996)

  • Volume: 64, Issue: 3, page 255-288
  • ISSN: 0246-0211

How to cite

top

Petritis, Dimitri. "Equilibrium statistical mechanics of frustrated spin glasses : a survey of mathematical results." Annales de l'I.H.P. Physique théorique 64.3 (1996): 255-288. <http://eudml.org/doc/76714>.

@article{Petritis1996,
author = {Petritis, Dimitri},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {spin-glasses; Sherrington-Kirkpatrick model; Edwards-Anderson model; disordered systems},
language = {eng},
number = {3},
pages = {255-288},
publisher = {Gauthier-Villars},
title = {Equilibrium statistical mechanics of frustrated spin glasses : a survey of mathematical results},
url = {http://eudml.org/doc/76714},
volume = {64},
year = {1996},
}

TY - JOUR
AU - Petritis, Dimitri
TI - Equilibrium statistical mechanics of frustrated spin glasses : a survey of mathematical results
JO - Annales de l'I.H.P. Physique théorique
PY - 1996
PB - Gauthier-Villars
VL - 64
IS - 3
SP - 255
EP - 288
LA - eng
KW - spin-glasses; Sherrington-Kirkpatrick model; Edwards-Anderson model; disordered systems
UR - http://eudml.org/doc/76714
ER -

References

top
  1. [1] M. Aizenman, J.L. Lebowitz and D. Ruelle, Some rigorous results on the Sherrington-Kirkpatrick model, Commun. Math. Phys., Vol. 112, 1987, pp. 3-20. Zbl1108.82312MR904135
  2. [2] M. Aizenman and J. Wehr, Rounding of first order phase transitions in systems with quenched disorder, Commun. Math. Phys., Vol. 130, 1990, pp. 489-528. Zbl0714.60090MR1060388
  3. [3] J.R.L. Almeida and D.J. Thouless, Stability of the Sherrington-Kirkpatrick solution of a spin glass model, J. Phys. A. Math. Gen., Vol. 11, 1978, pp. 983-990. 
  4. [4] J.M.G. Amaro De Matos, A.E. Patrick and V.A. Zagrebnov, Random infinite volume Gibbs states for the Curie-Weiss random field Ising model, J. Stat. Phys., Vol. 66, 1992, pp. 139-164. Zbl0925.60127MR1149483
  5. [5] D.J. Amit, H. Gutfreund and H. Sompolinsky, Spin-glass models of neural networks, Phys. Rev., A32, 1985, pp. 1007-1018. MR797031
  6. [6] L.A. Bassalygo and R.L. Dobrushin, Uniqueness of a Gibbs field with random potential: an elementary approach, Th. Prob. Appl., Vol. 31, 1988, pp. 572-589. Zbl0635.60107
  7. [7] G. Ben Arous and A. Guionnet, Huge symmetric Langevin spin glass dynamics, preprint Université de Paris XI, 1994. Zbl0954.60031MR1457623
  8. [8] C.E. Bezuidenhout, G.R. Grimmett and H. Kesten, Strict inequalities for critical values of Potts models and random chluster processes, preprint Bristol Université;, 1992. Zbl0783.60100
  9. [9] K. Binder and A.P. Young, Spin glasses: experimental facts, theoretical concepts, and open questions, Rev. Mod. Phys., Vol. 58, 1988, pp. 801-976. 
  10. [10] K. Binder, Y. Imry and E. Pytte, Interface roughening and random field instabilities, Phys. Rev., B24, 1981, pp. 6736-6739. 
  11. [11] P.M. Bleher, The Bethe lattice spin glass at zero temperature, Ann. Inst. H. Poincaré, Vol. 54, 1991, pp. 89-113. Zbl0719.60123MR1102973
  12. [12] A. Bovier, Disordered systems and random geometry: polymers, spin glasses, interfaces, Ph. D. dissertation, ETH Zurich, 1986. 
  13. [13] A. Bovier and J. Fröhlich, A heuristic theory of the spin glass phase, J. Stat. Phys., Vol. 44, 1986, pp. 347-391. MR857062
  14. [14] A. Bovier, V. Gayrard and P. Picco, Gibbs states of the Hopfield model with extensively many patterns, preprint Weiersrass IAAS, Berlin, 1994. Zbl1081.82570MR1325589
  15. [15] A. Bovier, V. Gayrard and P. Picco, Large deviation principales for the Hopfield and Kac-Hopfield models, preprint CPT Marseille, 1994. Zbl0826.60090MR1305586
  16. [16] J. Bricmont and A. Kupiainen, Phase transition in the three-dimensional random field Ising model, Commun. Math. Phys., Vol. 116, 1988, pp. 539-572. Zbl1086.82573MR943702
  17. [17] J. Bricmont and A. Kupiainen, Random walk in asymmetric random environments, Commun. Math. Phys., Vol. 142, 1991, pp. 345-420. Zbl0734.60112MR1137068
  18. [18] E. Buffet, A. Patrick and J.V. Pulé, Directed polymers on trees: a martingale approach, J. Phys. A: Math. Gen., Vol. 26, 1993, pp. 1823-1834. Zbl0773.60035MR1220795
  19. [19] M. Campanino and E. Olivieri, One dimensional random Ising system with interaction decay r-(1+∈); a convergent cluster expansion, Commun. Math. Phys., Vol. 111, 1987, pp. 555-557. Zbl0642.60103MR901154
  20. [20] M. Campanino, E. Olivieri and A. C.D. Van Enter, One dimensional spin glass with interaction decay r-(1+∈); a convergent cluster expansion, Commun. Math. Phys., Vol. 108, 1987, pp. 241-255. Zbl0615.60099MR875301
  21. [21] M. Cassandro, E. Olivieri and B. Tirozzi, Infinite differentiability for one dimensional spin systems with long range interactions, Commun. Math. Phys., Vol. 87, 1982, pp. 229-252. Zbl0506.58009MR684101
  22. [22] D. Caprocaccia, M. Cassandro and P. Picco, On the existence of thermodynamics for the generalised random energy model, J. Stat. Phys., Vol. 46, 1987, pp. 493-505. MR883541
  23. [23] S. Caracciolo, G. Parisi and N. Sourlas, Low temperature behaviour of three dimensional spin glasses in a magnetic field, J. Phys. France, Vol. 51, 1990, pp. 1877-1895. 
  24. [24] J.T. Chalker, On the lower critical dimensionality of the Ising model in a random field, J. Phys. C: Sol. State Phys., Vol. 16, 1983, pp. 6615-6622. 
  25. [25] B. Chauvin and A. Rouault, Boltmann-Gibbs wights in the branching random walk, IMA workshop on branching processes, June 1994, to appear in the proceedings. Zbl0866.60074MR1601693
  26. [26] D. Chowdhury, Spin glasses and other frustrated systems, World Scientific, Singapore, 1986. 
  27. [27] J. Chayes, L. Chayes and J. Fröhlich, The low temperature behaviour of disordered magnets, Commun. Math. Phys., Vol. 100, 1985, pp. 399-437. MR802552
  28. [28] J. Chayes, L. Chayes, J.P. Sethna and D.J. Thouless, A mean field spin glass with short-range interactions, Commun. Math. Phys., Vol. 106, 1986, pp. 41-89. MR853978
  29. [29] P. Collet and J.P. Eckmann, Spin glass model with random couplings, Commun. Math. Phys., Vol. 93, 1984, pp. 379-406. Zbl0553.60098MR745692
  30. [30] P. Collet and F. Koukiou, Large deviations for the multiplicative chaos, Commun. Math. Phys., Vol. 147, 1992, pp. 329-342. Zbl0755.60022MR1174416
  31. [31] F. Comets and J. Neveu, The Sherrington-Kirkpatrick model of spin glasses and stochastic calculus: the high temperature case, preprint CMAP École Polytechnique, 1993. Zbl0811.60098MR1312435
  32. [32] F. Comets, A spherical bound for the Sherrington-Kirkpatrick model, preprint Unviersité de Paris VII, 1994. MR1417976
  33. [33] P. Contucci, On the strict inequality between quenched and annealed Ising spin glass, preprints SISSA, 1993, to appear in Lett. Math. Phys. Zbl0768.60096MR1213613
  34. [34] B. Derrida, Random energy model: limit of a family of disordered models, Phys. Rev. Lett., Vol. 45, 1980, pp. 79-82. MR575260
  35. [35] B. Derrida and H. Spohn, Polymers on disordered trees, spin glasses, and travelling waves, J. Stat. Phys., Vol. 51, 1988, pp. 817-840. Zbl1036.82522MR971033
  36. [36] B. Derrida, M.R. Evans and E.R. Speer, Mean-field theory of directed polymers with random complex weights, preprint SPhT, 1992, to appear in Commun. Math. Phys. Zbl0779.60077MR1233845
  37. [37] R. Dobrushin, The description of a random field by means of conditional probabilities and conditions of its regularity, Theor. Prob. Appl., Vol. 13, 1968, pp. 197-224. Zbl0184.40403MR231434
  38. [38] C. De Dominicis and M. Hilhorst, Random free energies in spin glasses, J. Phys. Lett., Vol. 46, 1985, pp. L909-L914. 
  39. [39] H. von Dreifus, A. Klein and J. Fernando Perez, Taming Griffiths' singularities: infinite differentiability of quenched correlation functions, preprint UCLA, 1994 to appear in Commun. Math. Phys. Zbl0820.60086MR1331689
  40. [40] S.F. Edwards and P.W. Anderson, Theory of spin glasses, J. Phys. F: Metal Phys., Vol. 5, 1975, pp. 965-974. 
  41. [41] A.C.D. Van Enter, One-dimensional spin glasses; uniqueness and cluster properties, J. Phys. A: Math. Gen., Vol. 21, 1988, pp. 1781-1786. MR952725
  42. [42] A.C.D. Van Enter, Stiffness exponents, number of pure states, and Almeida-Thouless lines in spin glasses, J. Stat. Phys., Vol. 60, 1990, pp. 275-279. Zbl1086.82575MR1063219
  43. [43] A.C.D. Van Enter and J.L. Van Hemmen, Statistical mechanical formalism for sign glasses, Phys. Rev. A, Vol. 29, 1984, pp. 355-365. MR729632
  44. [44] A.C.D. Van Enter and J.L. Van Hemmen, Thermodynamic limit for long-range spin glasses, J. Stat. Phys., Vol. 32, 1985, pp. 141-152. 
  45. [45] A.C.D. Van Enter and J. Fröhlich, Absence of symmetry breaking for N-vector spin glass models in two dimensions, Commun. Math. Phys., Vol. 98, 1985, pp. 425-432. Zbl1223.82059MR788782
  46. [46] A.C.D. Van Enter and R. Griffiths, The order parameter in a spin glass, Commun. Math. Phys., Vol. 90, 1983, pp. 319-327. MR719293
  47. [47] A.C.D. van Enter and J. Miękisz, Breaking of periodicity at positive temperatures, Commun. Math. Phys., Vol. 134, 1990, pp. 647-651. Zbl0711.60109MR1086748
  48. [48] D. Espriu, M. Gross, P.E.L. Rakow and J.F. Wheater, Continuum limit on a two-dimensional random lattice, Nucl. Phys., Vol. B265 [FS 15], 1986, pp. 92-112. 
  49. [49] D.S. Fisher, J. Fröhlich and T. Spencer, The Ising model in a random magnetic field, J. Stat. Phys., Vol. 34, 1984, pp. 863-870. MR751717
  50. [50] D.S. Fisher and D.A. Huse, Pure phases in spin glasses, J. Phys. A: Math. Gen., Vol. 20, 1987, pp. L997-L1003; Absence of many states in magnetic spin glasses, J. Phys. A: Math. Gen., Vol. 20, 1987, pp. L1005-L1010. 
  51. [51] J. Fröhlich, Mathematical aspects of the physics of disordered systems, in Critical phenomena, random systems, and gauge theories, K OSTERWALDER, R. STORA Eds. pp. 725-894, North-Holland, Amsterdam, 1986. Zbl0669.60098MR880538
  52. [52] J. Fröhlich and J. Imbrie, Improved perturbation expansion for disordered systems: beating Griffiths singularities, Commun. Math. Phys., Vol. 96, 1984, pp. 145-180. Zbl0574.60098MR768253
  53. [53] J. Fröhlich and B. Zegarlinski, The disordered phase of long-range Ising spin glasses, Europhys. Lett., Vol. 2, 1986, pp. 53-60. 
  54. [54] J. Fröhlich and B. Zegarlinski, The high temperature phase of long range spin glasses, Commun. Math. Phys., Vol. 110, 1987, pp. 121-155. MR885574
  55. [55] J. Fröhlich and B. Zegarlinski, Some comments on the Sherrington-Kirkpatrick model of spin glasses, Commun. Math. Phys., Vol. 112, 1987, pp. 553-566. MR910578
  56. [56] J. Fröhlich and B. Zegarlinski, Spin glasses and other lattice systems with long range interactions, Commun. Math. Phys., Vol. 120, 1989, pp. 665-688. Zbl0661.60128MR987774
  57. [57] A. Galves, S. Martínez and P. Picco, Fluctuations in Derrida's random energy and generalised random energy models, J. Stat. Phys., Vol. 54, 1989, pp. 515-529. MR984264
  58. [58] E. Gardner, A spin glass on a hierarchical lattice, J. Phys. France, Vol. 45, 1984, pp. 1755-1763. MR769601
  59. [59] C.P.M. Geerse and A. Hof, Lattice gas models on self-similar aperiodic tilings, Rev. Math. Phys., Vol. 3, 1991, pp. 163-221. Zbl0743.60115MR1121468
  60. [60] A. Georges, M. Mézard and J. Yedidia, Low temperature phase of the Ising spin glass on a hypercubic lattice, Phys. Rev. Lett., Vol. 64, 1990, pp. 2937-2940. Zbl1050.82558MR1055998
  61. [61] A. Georges, D. Hansel, P. Le Doussal, J.M. Maillard and J. Bouchaud, Rigorous bounds for 2D disordered Ising models, J. Phys. France, Vol. 47, 1986, pp. 947-953. 
  62. [62] H.O. Georgii, Spontaneous magnetisation of randomly dilute ferromagnets, J. Stat. Phys., Vol. 25, 1981, pp. 369-396. MR630351
  63. [63] V.L. Girko, Theory of random determinants, Kluwer Academic Publ., Dodrecht, 1990. MR1080966
  64. [64] E. Goles and S. Martínez, The one-site distribution of Gibbs states on the Bethe lattice are probability vectors of period ≤ 2 for a nonlinear transformation, J. Stat. Phys., Vol. 52, 1988, pp. 267-285. Zbl1082.82506MR968586
  65. [65] S. Goulart-Rosa, The thermodynamic limit of quenched free energy of magnetic systems with random interactions, J. Phys. A: Math. Gen., Vol. 15, 1982, pp. L51-L54. MR638300
  66. [66] R.B. Griffiths, Nonalytic behaviour above the critical point in a random Ising ferromagnet, Phys. Rev. Lett., Vol. 23, 1969, pp. 17-19. 
  67. [67] G.R. Grimmett, The stochastic random cluster process and the uniqueness of random cluster measures, preprint Cambridge, 1994. 
  68. [68] F. Guerra, Fluctuations and thermodynamic variables in mean field spin glass models, preprint Roma-La Sapienza, 1992. Zbl0835.60099
  69. [69] F. Guerra, The cavity method in the mean field spin glass model. Functional representations of thermodynamic variables, preprint Roma - La Sapienza, 1994. MR1414694
  70. [70] F. Guerra, Functional order parameters for the quenched free energy in mean field spin glass model, preprint Roma - La Sapienza, 1992. MR1428232
  71. [71] J.L. Van Hemmen, Classical spin glasses model, Phys. Rev. Lett., Vol. 49, 1982, pp. 409-412. MR668161
  72. [72] J.L. Van Hemmen and I. Morgenstern Eds., Heidelberg colloquium on spin glasses, Lect. Notes Phys., Vol. 192, 1983. MR733796
  73. [73] J.J. Hopfield, Neural networks and physical systems with emergent collective computational capabilities, Proc. Natl. Acad. Sci. USA, Vol. 79, 1982, pp. 2554-2588. MR652033
  74. [74] J. Imbrie, The ground states of the three-dimensional random field Ising model, Commun. Math. Phys., Vol. 98, 1985, pp. 145-176 Zbl1223.82016MR786570
  75. [75] Y. Imry, Random external fields, J. Stat. Phys., Vol. 34, 1984, pp. 849-862. 
  76. [76] J.P. Kahane, Multiplications aléatoires et dimension de Hausdorff, Ann. Inst. H. Poincaré, Vol. 23, 1987, pp. 289-296. Zbl0619.60005MR898497
  77. [77] K.M. Khanin, Absence of phase transition in one-dimensional long-range spin systems with random interactions, Theor. Math. Phys., Vol. 43, 1980, pp. 445-449. 
  78. [78] K.M. Khanin and Ya Sinai, Existence of free energy for models with long-range random Hamiltonian, J. Stat. Phys., Vol. 20, 1979, pp. 573-584. MR537262
  79. [79] S. Kirkpatrick and D. Sherrington, Infinite-ranged models of spin glasses, Phys. Rev. B, Vol. 17, 1978, pp. 4384-4403. 
  80. [80] H. Koch, A free energy bound for the Hopfield model, J. Phys. A: Math. Gen., Vol. 26, 1993, pp. L353-L355. Zbl0775.82008MR1212003
  81. [81] R. Kotecký and E. Olivieri, Droplet dynamics for asymmetric Ising model, J. Stat. Phys., Vol. 70, 1993, pp. 1121-1148. Zbl1081.82591MR1208633
  82. [82] A.M. Khorunzy, B.A. Khoruzhenko, L.A. Pastur and M. Shcherbina, Large n limit in statistical mechanics and spectral theory of disordered systems, in Phase transitions and critical phenomena (DOMB and LEBOWITZ Eds.), Vol. 15, 1992, pp. 74-241, Academic Press, London. 
  83. [83] F. Koukiou, Rigorous bounds for the free energy of short range Ising spin glass model, Europhys. Lett., Vol. 17, 1992, pp. 669-671. MR1158147
  84. [84] F. Koukiou, A random covering interpretation for the phase transition of the random energy model, J. Stat. Phys., Vol. 60, 1990, pp. 669-674. Zbl1086.82544MR1076915
  85. [85] F. Koukiou, private communication, 1994. 
  86. [86] F. Koukiou, D. Petritis and M. Zahradník, Extension of the Pirogov-Sinai theory to a class of quasiperiodic interactions, Commun. Math. Phys., Vol. 118, 1988, pp. 365-383. Zbl0668.58013MR958802
  87. [87] F. Koukiou and P. Picco, Poisson point processes, cascades, and random coverings of Rn, J. Stat. Phys., Vol. 62, 1991, pp. 481-489. Zbl0741.60111MR1105270
  88. [88] W. Krauth and O. Pluchery, A rapid dynamical Monte Carlo algorithm for glassy systems, J. Phys. A: Math. Gen., Vol. 27, 1994, pp. L715-L720. Zbl0850.82045MR1306164
  89. [89] O.E. Lanford and D. Ruelle, Observable at infinity and states with short range correlations in statistical mechanics, Commun. Math. Phys., Vol. 13, 1969, pp. 194-215. MR256687
  90. [90] B. Lautrup, Uniqueness of Parisi's scheme for replica symmetry breaking, Ann. Phys.NY, Vol. 216, 1992, pp. 73-97. Zbl0875.20004MR1163416
  91. [91] M. Ledoux and M. Talagrand, Probability in Banach spaces, Springer-Verlag, Berlin, 1991. Zbl0748.60004MR1102015
  92. [92] F. Ledrappier, Pressure and variational principle for random Ising model, Commun. Math. Phys., Vol. 56, 1977, pp. 297-302. Zbl0367.60116MR456186
  93. [93] L. Lovász, Combinatorial problems and exercises, North-Holland, Amsterdam, 1993. Zbl0785.05001MR1265492
  94. [94] T.C. Lubensky, Critical properties of random spin models from ∈ expansions, Phys. Rev. B, Vol. 11, 1975, pp. 3573-3580. 
  95. [95] R.J. Mceliece, The theory of information and coding, Encyclopedia of Mathematics, Addison-Wesley, Reading, 1977. Zbl0376.94011MR469516
  96. [96] E. Marinari, G. Parisi and F. Ritort, Replica field theory for determinisitic models: binary sequences with low autocorrelation, preprint Roma-La Sapienza, 1994, available from hep-th@babbage.sissa.it under the reference 9405148. Zbl0843.60096
  97. [97] E. Marinari, G. Parisi and F. Ritort, Replica field theory for determinisitic models: non random spin glasses with glassy behaviour, preprint Roma-La Sapienza, 1994, available from cond-mat@babbage.sissa.it under the reference 9406074. Zbl0843.60097
  98. [98] E. Marinari, G. Parisi, F. Ritort, On the 3d Ising spin, preprint Roma-La Sapienza, 1993, available from cond-mat@babbage.sissa.it under the reference 9310041. 
  99. [99] F. Martinelli, Dynamical analysis of the low temperature cluster algorithms, J. Stat. phys., Vol. 66, 1992, pp. 1245-1276. Zbl0925.82181MR1156404
  100. [100] F. Martinelli, E. Olivieri and E. Scoppola, On the Swendsen-Wang dynamics I: Exponential convergence to the equilibrium, J. Stat. Phys., Vol. 62, 1991, pp. 117-133. Zbl0739.60097MR1105259
  101. [101] F. Martinelli, E. Olivieri and E. Scoppola, On the Swendsen-Wang dynamics II: Critical droplets and homogeneous nucleation at low temperature, J. Stat. Phys., Vol. 62, 1991, pp. 135-159. Zbl0739.60098MR1105260
  102. [102] S. Martínez and D. Petritis, Brownian bridge polymer model in a random environment, J. Phys. A: Math. Gen., 1996, in press. Zbl0919.60078MR1385633
  103. [103] J. Mémin, private communication, 1994. 
  104. [104] M. Mézard, G. Parisi and M. Virasoro, Spin glass theory and beyond, World Scientific, Singapore, 1987. Zbl0992.82500MR1026102
  105. [105] M. Mézard, G. Parisi and M. Virasoro, The replica solution without replicas, Europhys. Lett., Vol. 1, 1986, pp. 77-82. 
  106. [106] M. Mézard, G. Parisi, N. Sourlas, G. Toulouse and M. Virasoro, Nature of the spin-glass phase, Phys. Rev. Lett., Vol. 52, 1984, pp. 1156-1159. Zbl0968.82528
  107. [107] J. Miękisz, A microscopic model with quasicrystalline properties, J. Stat. Phys., Vol. 58, 1990, pp. 1137-1146. MR1049061
  108. [108] C.M. Newman, Memory capacity in neural network model: rigorous lower bounds, Neural Net., Vol. 1, 1988, pp. 223-238. 
  109. [109] C.M. Newman and D.L. Stein, Multiple states and thermodynamic limites in short ranged Ising spin glass models, Phys. Rev. B, Vol. 46, 1992, pp. 973. 
  110. [110] C.M. Newman and D.L. Stein, Non-mean-field behaviour of realistic spin glasses, preprint New York University, 1995, available from adap-org@xyz.lanl.gov under reference 9508006. 
  111. [111] A. Ogielski and I. Morgenstern, Critical behaviour of the three dimensional Ising spin glass model, Phys. Rev. Lett., Vol. 54, 1985, pp. 928-931. 
  112. [112] E. Olivieri and P. Picco, On the existence of thermodynamics for the random energy model, Commun. Math. Phys., Vol. 96, 1984, pp. 125-144. Zbl0585.60098MR765963
  113. [113] G. Parisi, Infinite number of order parameters for spin glasses, Phys. Rev. Lett., Vol. 43, 1979, pp. 1754-1756. 
  114. [114] G. Parisi, A sequence of approximated solutions to the Sherrington-Kirkpatrick model for spin glasses, J. Phys. A: Math. Gen., Vol. 13, 1980, pp. L115-L121. 
  115. [115] G. Parisi, The order parameter for spin glasses: a function on the interval [0, 1], J. Phys. A: Math. Gen., Vol. 13, 1980, pp. 1101-1112. 
  116. [116] G. Parisi,, Magnetic properties of spin glasses in a new mean field theory, J. Phys. A: Math. Gen., Vol. 13, 1980, pp. 1887-1895. 
  117. [117] L. Pastur, Statistical physics and spectral theory of disordered systems: some recent developments, in Proc. X-th International conference of mathematical physics (Leipzig, 1991), Springer-Verlag, Berlin, 1992. Zbl0947.82506MR1386398
  118. [118] L. Pastur and A. Figotin, Theory of disordered spin systems, Theor. Math. Phys., Vol. 35, 1978, pp. 403-414. MR503349
  119. [119] L. Pastur and A. Figotin, Spectra of random and almost periodic operators, Springer-Verlag, Berlin, 1992. Zbl0752.47002MR1223779
  120. [120] L. Pastur and M. Shcherbina, Absence of self-averaging of the order parameter in the Sherrington-Kirkpatrick model, J. Stat. Phys., Vol. 62, 1991, pp. 1-19. MR1105253
  121. [121] L. Pastur, M. Shcherbina and B. Tirozzi, The replica symmetric solution without replica trick for the Hopfield model, J. Stat. Phys., Vol. 74, 1994, pp. 1161-1183. Zbl0835.60092MR1268789
  122. [122] D. Petritis, The zero-level set of the Brownian bridge as a model of disordered physical systems, in Proc. prob. Theory and Math. Statistics Vol. 2 (Vilnius, 1989), Mosklas, Vilnius, 1990. Zbl0726.60080MR1153883
  123. [123] D. Petritis, Thermodynamics for the zero-level set of the Brownian bridge, Commun. Math. Phys., Vol. 125, 1989, pp. 579-595. Zbl0679.60081MR1024928
  124. [124] D. Petritis, Thermodynamic formalism of neural computing, Lectures given in the IV-th summer school on Statistical Physics and cooperative systems, Santiago de Chile, 12-16 December 1994, preprint Université de Rennes-I, 1995, available from mp-arc@math.utexas.edu under reference 95-221. MR1421794
  125. [125] D. Petritis, Simulations numériques Monte Carlo, preprint Université de Rennes-I, 1993, to be published by Masson, Paris, 1995. 
  126. [126] P. Picco, Verres de spin, Thèse d'État, Université de Marseille-II, 1988. 
  127. [127] P. Picco, Rigorous results on spin glasses: a review, Rev. Math. Appl., Vol. 12, 1991, pp. 157-169. MR1130608
  128. [128] P. Picco, Upper bound on the decay of correlations in the plane rotator model with long-range random interaction, J. Stat. Phys., Vol. 36, 1984, pp. 489-516. Zbl0586.60099MR780678
  129. [129] L.E. Pontin, J.A. Baêta Segundo and J. Fernando Perez, Dilute antiferromagnets: Imry-Ma argument, hierarchical model, and equivalence to random field Ising models, J. Stat. Phys., Vol. 75, 1994, pp. 51-65. Zbl0828.60090MR1273053
  130. [130] P. Révesz, Random walks in random and non random environments, World Scientific, Singapore, 1990. Zbl0733.60091MR1082348
  131. [131] M.A. Ruderman and C. Kittel, Indirect exchange coupling of nuclear magnetic moments by conduction electrons, Phys. Rev., Vol. 96, 1954, pp. 99-102. 
  132. [132] D. Ruelle, A mathematical reformulation of Derrida's REM and GREM, Commun. Math. Phys., Vol. 108, 1987, pp. 225-239. Zbl0617.60100MR875300
  133. [133] M. Shcherbina and B. Tirozzi, The free energy of a class of Hopfield models, J. Stat. Phys., Vol. 72, 1993, pp. 113-125. Zbl1097.82551MR1233028
  134. [134] D. Sherrington, and S. Kirkpatrick, Solvable model of a spin glass, Phys. Rev. Lett., Vol. 35, 1975, pp. 1792-1796. 
  135. [135] D. Szász, communication, 1992. 
  136. [136] M. Talagrand, Concentration of measure and isoperimetric inequalities in product spaces, preprint Université Paris-VI, 1994. Zbl0864.60013MR1361756
  137. [137] M. Talagrand, A new look at independence, preprint Université de Paris-VI, 1995. MR1387624
  138. [138] S.R.S. Varadhan, Private communication, 1992. 
  139. [139] P. Vuillermot, Thermodynamics of quenched random spin systems and applications to the proble of phase transitions in magnetic spin glass, J. Phys. A: Math. Gen., Vol. 10, 1977, pp. 1319-1333. MR452421
  140. [140] F. Vermet, Asymptotic study of a neural network: the Hopfield deterministic sequential dynamics, preprint Université de Rennes-I, 1994. 
  141. [141] F. Vermet, Étude asymptotique d'un réseau neuronal, Thèse de doctorat, Université de Rennes-I, 1994. 
  142. [142] E.C. Waymire and S.C. Williams, Correlated spin glasses on trees, IMA workshop on branching processes, June 1994, to appear in the proceedings. 
  143. [143] P. Whittle, Random fields on random graphs, Adv. Appl. Prob., Vol. 24, 1992, pp. 455-473. Zbl0753.60102MR1167267
  144. [144] H. Wilf, Generatingfunctionology, Academic Press, Boston, 1994. Zbl0831.05001MR1277813
  145. [145] B. Zegarlinski, Interactions and pressure functionals for disordered lattice systems, Commun. Math. Phys., Vol. 139, 1991, pp. 305-339. Zbl0747.58066MR1120141
  146. [146] B. Zegarlinski, Spin glass with long range interactions at high temperature, J. Stat. Phys., Vol. 17, 1987, pp. 911-930. MR912509

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.