Phase space properties of local observables and structure of scaling limits
Annales de l'I.H.P. Physique théorique (1996)
- Volume: 64, Issue: 4, page 433-459
- ISSN: 0246-0211
Access Full Article
topHow to cite
topBuchholz, Detlev. "Phase space properties of local observables and structure of scaling limits." Annales de l'I.H.P. Physique théorique 64.4 (1996): 433-459. <http://eudml.org/doc/76726>.
@article{Buchholz1996,
author = {Buchholz, Detlev},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {bounds on the number of local degrees of freedom; algebra of local observables; relativistic quantum field theory; scaling algebra; renormalization group transformations; scaling limit theories; split property},
language = {eng},
number = {4},
pages = {433-459},
publisher = {Gauthier-Villars},
title = {Phase space properties of local observables and structure of scaling limits},
url = {http://eudml.org/doc/76726},
volume = {64},
year = {1996},
}
TY - JOUR
AU - Buchholz, Detlev
TI - Phase space properties of local observables and structure of scaling limits
JO - Annales de l'I.H.P. Physique théorique
PY - 1996
PB - Gauthier-Villars
VL - 64
IS - 4
SP - 433
EP - 459
LA - eng
KW - bounds on the number of local degrees of freedom; algebra of local observables; relativistic quantum field theory; scaling algebra; renormalization group transformations; scaling limit theories; split property
UR - http://eudml.org/doc/76726
ER -
References
top- [1] D. Buchholz and R. Verch, Scaling algebras and renormalization group in algebraic quantum field theory, Rev. Math. Phys., Vol. 7, 1995, p. 1195. Zbl0842.46052MR1369742
- [2] J. Zinn-Justin, Quantum field theory and critical phenomena, Oxford: Clarendon Press1989. Zbl0865.00014MR1079938
- [3] R. Haag, Local Quantum Physics, Berlin, Heidelberg, New York: Springer1992. Zbl0777.46037MR1182152
- [4] R. Haag and J.A. Swieca, When does a quantum field theory describe particles?, Commun. Math. Phys., Vol. 1, 1965, p. 308. Zbl0149.23803MR197077
- [5] D. Buchholz and E.H. Wichmann, Causal independence and the energy-level density of states in quantum field theory, Commun. Math. Phys., Vol. 106, 1986, p. 321. Zbl0626.46064MR855315
- [6] D. Buchholz and P. Junglas, On the existence of equilibrium states in local quantum field theory, Commun. Math. Phys., Vol. 121, 1989, p. 255. Zbl0673.46045MR985398
- [7] S. Doplicher and R. Longo, Standard and split inclusions of von Neumann algebras, Invent. Math., Vol. 75, 1984, p. 493. Zbl0539.46043MR735338
- [8] A. Pietsch, Nuclear locally convex spaces, Berlin, Heidelberg, New York: Springer1972. Zbl0236.46001MR350360
- [9] D. Buchholz and P. Jakobi, On the nuclearity condition for massless fields, Lett. Math. Phys., Vol. 13, 1987, p. 313. Zbl0637.46079MR895294
- [10] D. Buchholz, C. D'Antoni and R. Longo, Nuclear maps and modular structures. II. Applications to quantum field theory, Commun. Math. Phys., Vol. 129, 1990, p. 115. Zbl0773.47007MR1046280
- [11] D. Buchholz and P. Porrmann, How small is the phase space in quantum field theory?, Ann. Inst. H. Poincaré, Vol. 52, 1990, p. 237. Zbl0719.46044MR1057446
- [12] D. Buchholz, On the manifestation of particles, In: Mathematical physics towards the 21st century, Sen, R. N., Gersten, A., eds. Beer-Sheva: Ben Gurion University Press1994.
- [13] D. Buchholz and C. D'Antoni, Phase space properties of charged fields in theories of local observables, Rev. Math. Phys., Vol. 7, 1995, p. 527. Zbl0836.46070MR1332977
- [14] M. Takesaki, Theory of operator algebras. I., Berlin, Heidelberg, New York: Springer1979. Zbl0436.46043MR1873025
- [15] S. Sakai, C* algebras and W* algebras, Berlin, Heidelberg, New York: Springer1971. Zbl0219.46042MR442701
- [16] D. Buchholz, C. D'Antoni and K. Fredenhagen, The universal structure of local algebras, Commun. Math. Phys., Vol. 111, 1987, p. 123. Zbl0645.46048MR896763
- [17] D. Buchholz and J. Yngvason, Generalized nuclearity conditions and the split property in quantum field theory, Lett. Math. Phys., Vol. 23, 1991, p. 159. Zbl0795.46002MR1148509
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.