Phase space properties of local observables and structure of scaling limits

Detlev Buchholz

Annales de l'I.H.P. Physique théorique (1996)

  • Volume: 64, Issue: 4, page 433-459
  • ISSN: 0246-0211

How to cite

top

Buchholz, Detlev. "Phase space properties of local observables and structure of scaling limits." Annales de l'I.H.P. Physique théorique 64.4 (1996): 433-459. <http://eudml.org/doc/76726>.

@article{Buchholz1996,
author = {Buchholz, Detlev},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {bounds on the number of local degrees of freedom; algebra of local observables; relativistic quantum field theory; scaling algebra; renormalization group transformations; scaling limit theories; split property},
language = {eng},
number = {4},
pages = {433-459},
publisher = {Gauthier-Villars},
title = {Phase space properties of local observables and structure of scaling limits},
url = {http://eudml.org/doc/76726},
volume = {64},
year = {1996},
}

TY - JOUR
AU - Buchholz, Detlev
TI - Phase space properties of local observables and structure of scaling limits
JO - Annales de l'I.H.P. Physique théorique
PY - 1996
PB - Gauthier-Villars
VL - 64
IS - 4
SP - 433
EP - 459
LA - eng
KW - bounds on the number of local degrees of freedom; algebra of local observables; relativistic quantum field theory; scaling algebra; renormalization group transformations; scaling limit theories; split property
UR - http://eudml.org/doc/76726
ER -

References

top
  1. [1] D. Buchholz and R. Verch, Scaling algebras and renormalization group in algebraic quantum field theory, Rev. Math. Phys., Vol. 7, 1995, p. 1195. Zbl0842.46052MR1369742
  2. [2] J. Zinn-Justin, Quantum field theory and critical phenomena, Oxford: Clarendon Press1989. Zbl0865.00014MR1079938
  3. [3] R. Haag, Local Quantum Physics, Berlin, Heidelberg, New York: Springer1992. Zbl0777.46037MR1182152
  4. [4] R. Haag and J.A. Swieca, When does a quantum field theory describe particles?, Commun. Math. Phys., Vol. 1, 1965, p. 308. Zbl0149.23803MR197077
  5. [5] D. Buchholz and E.H. Wichmann, Causal independence and the energy-level density of states in quantum field theory, Commun. Math. Phys., Vol. 106, 1986, p. 321. Zbl0626.46064MR855315
  6. [6] D. Buchholz and P. Junglas, On the existence of equilibrium states in local quantum field theory, Commun. Math. Phys., Vol. 121, 1989, p. 255. Zbl0673.46045MR985398
  7. [7] S. Doplicher and R. Longo, Standard and split inclusions of von Neumann algebras, Invent. Math., Vol. 75, 1984, p. 493. Zbl0539.46043MR735338
  8. [8] A. Pietsch, Nuclear locally convex spaces, Berlin, Heidelberg, New York: Springer1972. Zbl0236.46001MR350360
  9. [9] D. Buchholz and P. Jakobi, On the nuclearity condition for massless fields, Lett. Math. Phys., Vol. 13, 1987, p. 313. Zbl0637.46079MR895294
  10. [10] D. Buchholz, C. D'Antoni and R. Longo, Nuclear maps and modular structures. II. Applications to quantum field theory, Commun. Math. Phys., Vol. 129, 1990, p. 115. Zbl0773.47007MR1046280
  11. [11] D. Buchholz and P. Porrmann, How small is the phase space in quantum field theory?, Ann. Inst. H. Poincaré, Vol. 52, 1990, p. 237. Zbl0719.46044MR1057446
  12. [12] D. Buchholz, On the manifestation of particles, In: Mathematical physics towards the 21st century, Sen, R. N., Gersten, A., eds. Beer-Sheva: Ben Gurion University Press1994. 
  13. [13] D. Buchholz and C. D'Antoni, Phase space properties of charged fields in theories of local observables, Rev. Math. Phys., Vol. 7, 1995, p. 527. Zbl0836.46070MR1332977
  14. [14] M. Takesaki, Theory of operator algebras. I., Berlin, Heidelberg, New York: Springer1979. Zbl0436.46043MR1873025
  15. [15] S. Sakai, C* algebras and W* algebras, Berlin, Heidelberg, New York: Springer1971. Zbl0219.46042MR442701
  16. [16] D. Buchholz, C. D'Antoni and K. Fredenhagen, The universal structure of local algebras, Commun. Math. Phys., Vol. 111, 1987, p. 123. Zbl0645.46048MR896763
  17. [17] D. Buchholz and J. Yngvason, Generalized nuclearity conditions and the split property in quantum field theory, Lett. Math. Phys., Vol. 23, 1991, p. 159. Zbl0795.46002MR1148509

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.