A representation independent propagator. II : Lie groups with square integrable representations

Wolfgang Tomé

Annales de l'I.H.P. Physique théorique (1996)

  • Volume: 65, Issue: 2, page 175-222
  • ISSN: 0246-0211

How to cite

top

Tomé, Wolfgang. "A representation independent propagator. II : Lie groups with square integrable representations." Annales de l'I.H.P. Physique théorique 65.2 (1996): 175-222. <http://eudml.org/doc/76740>.

@article{Tomé1996,
author = {Tomé, Wolfgang},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {representation independent propagator; real, compact Lie group; square integrable representations; curved manifold},
language = {eng},
number = {2},
pages = {175-222},
publisher = {Gauthier-Villars},
title = {A representation independent propagator. II : Lie groups with square integrable representations},
url = {http://eudml.org/doc/76740},
volume = {65},
year = {1996},
}

TY - JOUR
AU - Tomé, Wolfgang
TI - A representation independent propagator. II : Lie groups with square integrable representations
JO - Annales de l'I.H.P. Physique théorique
PY - 1996
PB - Gauthier-Villars
VL - 65
IS - 2
SP - 175
EP - 222
LA - eng
KW - representation independent propagator; real, compact Lie group; square integrable representations; curved manifold
UR - http://eudml.org/doc/76740
ER -

References

top
  1. [1] E.W. Aslaksen and J.R. Klauder, Unitary representations of the affine group, J. Math. Phys., Vol. 9, 1968, pp. 206-211. Zbl0162.58403MR233925
  2. [2] E.W. Aslaksen and J.R. Klauder, Continuous representation theory using the affine group, J. Math. Phys., Vol. 10, 1969, pp. 2267-2275. Zbl0184.54601MR256642
  3. [3] A.O. Barut and R. Rączka, "Theory of Group Representations and Applications," second revised edition, World Scientific, Singapore, 1986. Zbl0644.22011MR889252
  4. [4] A. Böhm, "The Rigged Hilbert Space and Quantum Mechanics", Springer Verlag, Berlin1978. Zbl0388.46045MR503149
  5. [5] F. Bruhat, Distributions sur un groupe localement compact et applications à l'étude des représentations des groupes p-adiques, Bull. Soc. Math. France, Vol. 89, 1961, pp. 43-75. Zbl0128.35701MR140941
  6. [6] A.L. Carey, Square-integrable representations of non-unimodular groups, Bull. Austral. Math. Soc., Vol. 15, 1976, pp. 1-12. Zbl0327.22008MR430146
  7. [7] J. Dixmier, "C*-Algebras", North Holland, Amsterdam, 1977. Zbl0372.46058MR458185
  8. [8] M. Duflo and C.C. Moore, On the regular representation of a nonunimodular locally compact group, J. Funct. Anal., Vol. 21, 1976, pp. 209-243. Zbl0317.43013MR393335
  9. [9] N. Dunford and J. Schwartz, "Linear Operators", Part 1, Wiley, New York, 1958. Zbl0084.10402
  10. [10] M. Flato, J. Simon, H. Snellman and D. Sternheimer, Simple facts about analytic vectors and integrability, Ann. scient. Éc. Norm. Sup., Vol. 5, 1972, pp. 423-434. Zbl0239.22019MR376960
  11. [11] I.M. Gel'fand and M.A. Neumark, Unitary representations of the group of linear transformations of the straight line [russ.], DokladyAkad. Nauk SSSR, Vol. 55, 1947, pp. 571-574. Zbl0029.00503MR20559
  12. [12] R. Haag, "Local Quantum Physics: Fields, Particles, Algebras", Springer Verlag, Berlin, 1992. Zbl0777.46037MR1182152
  13. [13] C.J. Isham and J.R. Klauder, Coherent states for n-dimensional Euclidean groups E(n) and their application, J. Math. Phys., Vol. 32, 1991, pp. 607-620. Zbl0735.22012MR1093798
  14. [14] J.R. Klauder, Path integrals, Acta Phys. Austriaca Suppl., Vol. XXII, 1980, pp. 3-49. MR602334
  15. [15] J.R. Klauder, "Path Integrals for Affine Variables." In: J. P. Antoine and E. Tirapequi (eds.), Functional Integration Theory and Applications, Proceedings, pp. 101-119, Plenum, New York, 1980. Zbl0481.28012MR602176
  16. [16] J.R. Klauder, "The universal propagator." In: D. Han, Y. S. Kim and W. W. Zachary (eds.), Workshop on Harmonic Oscillators, Proceedings, Maryland, USA, 1992, pp. 19- 28, NASA Publication 3197, 1993. 
  17. [17] J.R. Klauder and B.-S. Skagerstam, "Coherent States: Applications in Physics and Mathematical Physics", World Scientific, Singapore, 1985. Zbl1050.81558MR826247
  18. [18] J.R. Klauder and W.A. Tomé, The universal propagator for affine [or SU(1,1)] coherent states, J. Math. Phys., Vol. 33, 1992, pp. 3700-3709. Zbl0780.46039MR1185844
  19. [19] K. Maurin, "General Eigenfunction Expansions and Unitary Representations of Topological Groups", PWN-Polish Scientific Publishers, Warsaw, 1968. Zbl0185.39001MR247377
  20. [20] H. Meschkowski, "Hilbertsche Raume mit Kernfunktion", Springer Verlag, Berlin, 1962. Zbl0103.08802MR140912
  21. [21] E. Nelson, Analytic vectors, Ann. of Math., Vol. 70, 1959, pp. 572-615. Zbl0091.10704MR107176
  22. [22] L.S. Schulman, "Techniques and Applications of Path Integration", Wiley, New York, 1981. Zbl0587.28010MR601595
  23. [23] W.A. Tomé, A representation independent propagator. I. Compact Lie groups, Ann. Inst. Henri Poincaré, Theor. Phys., Vol. 63, 1995, pp. 1-40. Zbl0842.22025MR1354438
  24. [24] T.T. Troung, New integral equations for the quartic anharmonic oscillator, Nuovo Cimento Lett., Vol. 9, 1974, pp. 533-536. 
  25. [25] T.T. Troung, Weyl quantization of anharmonic oscillators, J. Math. Phys., Vol. 16, 1975, pp. 1034-1043. MR375996
  26. [26] G. Tulsian and J.R. Klauder, The universal propagator for E(2) coherent states, Commun. Theor. Phys., Vol. 5 (to appear). MR1369180
  27. [27] L.G. Yaffe, Large N limits as classical mechanics, Rev. Mod. Phys., Vol. 54, 1982, pp. 407-435. MR694200

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.