Simple facts about analytic vectors and integrability

M. Flato; J. Simon; H. Snellman; D. Sternheimer

Annales scientifiques de l'École Normale Supérieure (1972)

  • Volume: 5, Issue: 3, page 423-434
  • ISSN: 0012-9593

How to cite

top

Flato, M., et al. "Simple facts about analytic vectors and integrability." Annales scientifiques de l'École Normale Supérieure 5.3 (1972): 423-434. <http://eudml.org/doc/81902>.

@article{Flato1972,
author = {Flato, M., Simon, J., Snellman, H., Sternheimer, D.},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {eng},
number = {3},
pages = {423-434},
publisher = {Elsevier},
title = {Simple facts about analytic vectors and integrability},
url = {http://eudml.org/doc/81902},
volume = {5},
year = {1972},
}

TY - JOUR
AU - Flato, M.
AU - Simon, J.
AU - Snellman, H.
AU - Sternheimer, D.
TI - Simple facts about analytic vectors and integrability
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1972
PB - Elsevier
VL - 5
IS - 3
SP - 423
EP - 434
LA - eng
UR - http://eudml.org/doc/81902
ER -

References

top
  1. [1] E. BRUHAT, Sur les représentations induites des groupes de Lie (Bull. Soc. math. Fr., t. 84, 1956, p. 97-205). Zbl0074.10303MR18,907i
  2. [2] P. CARTIER et J. DIXMIER, Vecteurs analytiques dans les représentations des groupes de Lie (Amer. J. Math., vol. 80, 1958, p. 131-145). Zbl0081.11204MR20 #924
  3. [3] L. GÅRDING, Note on continuous representations of Lie groups (Proc. Nat. Acad. Sc. U.S.A., vol. 33, 1947, p. 331-332). Zbl0031.05703MR9,133b
  4. [4] L. GÅRDING, Vecteurs analytiques (Bull. Soc. math. Fr., t. 88, 1960, p. 73-93). Zbl0095.10402MR22 #9870
  5. [5] R. GOODMAN, Analytic and entire vectors for representations of Lie groups (Trans. Amer. Math. Soc., vol. 143, 1969, p. 55-76.) Zbl0189.14102MR40 #1537
  6. [6] HARISH-CHANDRA, Representations of semi-simple Lie groups on a Banach space I (Trans. Amer. Math. Soc., vol. 75, 1953, p. 185-243). Zbl0051.34002MR15,100f
  7. [7] S. HELGASON, Differential geometry and symmetric spaces, Academic Press, London, 1962. Zbl0111.18101MR26 #2986
  8. [8] E. HILLE and R. S. PHILLIPS, Functional Analysis and Semi-Groups (A.M.S. colloquium publications, Providence, 1957). Zbl0078.10004MR19,664d
  9. [9] T. KATO, Perturbation theory for linear operators, Springer, Berlin, 1966. Zbl0148.12601MR34 #3324
  10. [10] R. T. MOORE, Exponentiation of operator Lie algebras on Banach spaces (Bull. Amer. Math. Soc., vol. 71, 1965, p. 903-908). Zbl0166.40004MR32 #5788
  11. [11] E. NELSON, Analytic Vectors (Annals of Math., vol. 81, 1959, p. 547-560). MR22 #907
  12. [12] J. TITS and L. WAELBROECK, The integration of a Lie algebra representation (Pacific J. Math., vol. 26, 1968, p. 595-600). Zbl0172.18602MR38 #5995

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.