Gauge symmetries of an extended phase space for Yang-Mills and Dirac fields
Günter Schwarz; Jędrzej Śniatycki
Annales de l'I.H.P. Physique théorique (1997)
- Volume: 66, Issue: 1, page 109-136
- ISSN: 0246-0211
Access Full Article
topHow to cite
topReferences
top- [1] I. Segal, "The Cauchy problem for the Yang-Mills equations", J. Funct. Anal., Vol. 33, 1979, pp. 175-194. Zbl0416.58027MR546505
- [2] J. Ginebre and G. Velo, "The Cauchy problem for coupled Yang-Mills and scalar fields in temporal gauge", Comm. Math. Phys., Vol. 82, 1981, pp. 1-28. Zbl0486.35048MR638511
- [3] D.M. Eardley and V. Moncrief, "The global existence of Yang-Mills-Higgs fields in 4-dimensional Minkowski space", Comm. Math. Phys. , Vol. 83, 1982, pp. 171-191 and pp. 193-212. Zbl0496.35061
- [4] Y. Choquet-Bruhat and D. Christodoulu, "Exitence de solutions globales deséquations classiques des théories de jauge", C. R. Acad. Sc. Paris, Vol. 293, sér.1, 1981, pp. 181-195. Zbl0478.58027
- [5] S. Klainerman and M. Machedon, "Finite energy solutions of the Yang-Mills equations in IR3+1", preprint, Department of Mathematics, Princeton University. Zbl0827.53056
- [6] R.A. Adams, Sobolev Spaces, Academic Press, Orlando, Florida, 1975. Zbl0314.46030MR450957
- [7] H. Aikawa, "On weighted Beppo Levi functions. Integral representation and behaviour at infinity", Analysis, Vol. 9, 1989, pp. 323-346. Zbl0697.31004MR1032579
- [8] J. Deny and J.L. Lions, "Les éspaces du type de Beppo Levi", Ann. Inst. Fourier, Vol. 5, 1955, pp. 305-370. Zbl0065.09903MR74787
- [9] R. McOwen, "The behavior of the Laplacian on weighted Sobolev spaces", Comm. Pure Appl. Math., Vol. XXXII, 1979, pp. 783-795. Zbl0426.35029MR539158
- [10] G. Schwarz, Hodge Decomposition - A Method for Solving Boundary Value Problems, Lecture Notes in Mathematics 1607, Springer-Verlag, Heidelberg, 1995. Zbl0828.58002MR1367287
- [11] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer Verlag, New York, 1983. Zbl0516.47023MR710486
- [12] J. Weidmann, Linear Operators in Hilbert Spaces, Springer Verlag, Berlin, 1980. Zbl0434.47001MR566954
- [13] K. Yosida, Functional Analysis, Springer Verlag, Berlin, 1971. Zbl0217.16001
- [14] G. Schwarz and J. Śniatycki, "Yang-Mills and Dirac fields in a bag, existence and uniqueness theorems", Comm. Math. Phys., Vol. 168, 1995, pp. 441-453. Zbl0826.53057MR1324405
- [15] J. Śniatycki, G. Schwarz and L. Bates, "Yang-Mills and Dirac fields in a bag, constraints and reduction", Comm. Math. Phys., Vol. 176, 1996, pp. 95-117. Zbl0852.58080MR1372819
- [16] I. Segal, "Non-linear semigroups", Ann. Math., Vol. 78, 1963, pp. 339-364. Zbl0204.16004MR152908
- [17] G. Schwarz and J. Śniatycki, "The Hamiltonian evolution of Yang-Mills and Dirac fields", Acta Phys. Pol. B 27, No. 4, 1-12 (1996). Zbl0966.58502
- [18] W. Von Wahl, "Analytische Abbildungen und semilineare Differentialgleichungen in Banachräumen", Nachr. Akad. Wiss. Göttingen, II, math.-phys. Klasse, 1979, pp. 1-48. Zbl0433.34047MR568805
- [19] J. Eichhorn, "Gauge theory of open manifolds of bounded geometry", Ann. Global Anal. Geom., Vol. 11, 1993, pp. 253-300. Zbl0840.58014MR1175322
- [20] A. Weil, Sur les espaces a structures uniformes, Act. Sci. Ind., 551, Hermann, Paris, 1938. Zbl0019.18604
- [21] S. Lang, Differential and Riemannian Manifolds, Springer Verlag, New York, 1995. Zbl0824.58003MR1335233
- [22] G. Schwarz and J. Śniatycki, "The constraint set of the Yang-Mills-Dirac theory in the Minkowski space", in preparation. Zbl0966.58502
- [23] J. Śniatycki and G. Schwarz [94], "An invariance argument for confinement", Rep. Math. Phys., 34, 1994, pp. 311-324. Zbl0831.58056MR1339468
- [24] C. Amrouche, V. Girault and J. Giroire, "Weighted Sobolev spaces for Laplace's equation in IRn", J. Math. Pures Appl., Vol. 73, 1994, pp. 579-606. Zbl0836.35038MR1309165