Gauge symmetries of an extended phase space for Yang-Mills and Dirac fields

Günter Schwarz; Jędrzej Śniatycki

Annales de l'I.H.P. Physique théorique (1997)

  • Volume: 66, Issue: 1, page 109-136
  • ISSN: 0246-0211

How to cite

top

Schwarz, Günter, and Śniatycki, Jędrzej. "Gauge symmetries of an extended phase space for Yang-Mills and Dirac fields." Annales de l'I.H.P. Physique théorique 66.1 (1997): 109-136. <http://eudml.org/doc/76745>.

@article{Schwarz1997,
author = {Schwarz, Günter, Śniatycki, Jędrzej},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Hilbert Lie group; Yang-Mills theory; Cauchy problem; gauge fixing; gauge symmetry; Dirac fields},
language = {eng},
number = {1},
pages = {109-136},
publisher = {Gauthier-Villars},
title = {Gauge symmetries of an extended phase space for Yang-Mills and Dirac fields},
url = {http://eudml.org/doc/76745},
volume = {66},
year = {1997},
}

TY - JOUR
AU - Schwarz, Günter
AU - Śniatycki, Jędrzej
TI - Gauge symmetries of an extended phase space for Yang-Mills and Dirac fields
JO - Annales de l'I.H.P. Physique théorique
PY - 1997
PB - Gauthier-Villars
VL - 66
IS - 1
SP - 109
EP - 136
LA - eng
KW - Hilbert Lie group; Yang-Mills theory; Cauchy problem; gauge fixing; gauge symmetry; Dirac fields
UR - http://eudml.org/doc/76745
ER -

References

top
  1. [1] I. Segal, "The Cauchy problem for the Yang-Mills equations", J. Funct. Anal., Vol. 33, 1979, pp. 175-194. Zbl0416.58027MR546505
  2. [2] J. Ginebre and G. Velo, "The Cauchy problem for coupled Yang-Mills and scalar fields in temporal gauge", Comm. Math. Phys., Vol. 82, 1981, pp. 1-28. Zbl0486.35048MR638511
  3. [3] D.M. Eardley and V. Moncrief, "The global existence of Yang-Mills-Higgs fields in 4-dimensional Minkowski space", Comm. Math. Phys. , Vol. 83, 1982, pp. 171-191 and pp. 193-212. Zbl0496.35061
  4. [4] Y. Choquet-Bruhat and D. Christodoulu, "Exitence de solutions globales deséquations classiques des théories de jauge", C. R. Acad. Sc. Paris, Vol. 293, sér.1, 1981, pp. 181-195. Zbl0478.58027
  5. [5] S. Klainerman and M. Machedon, "Finite energy solutions of the Yang-Mills equations in IR3+1", preprint, Department of Mathematics, Princeton University. Zbl0827.53056
  6. [6] R.A. Adams, Sobolev Spaces, Academic Press, Orlando, Florida, 1975. Zbl0314.46030MR450957
  7. [7] H. Aikawa, "On weighted Beppo Levi functions. Integral representation and behaviour at infinity", Analysis, Vol. 9, 1989, pp. 323-346. Zbl0697.31004MR1032579
  8. [8] J. Deny and J.L. Lions, "Les éspaces du type de Beppo Levi", Ann. Inst. Fourier, Vol. 5, 1955, pp. 305-370. Zbl0065.09903MR74787
  9. [9] R. McOwen, "The behavior of the Laplacian on weighted Sobolev spaces", Comm. Pure Appl. Math., Vol. XXXII, 1979, pp. 783-795. Zbl0426.35029MR539158
  10. [10] G. Schwarz, Hodge Decomposition - A Method for Solving Boundary Value Problems, Lecture Notes in Mathematics 1607, Springer-Verlag, Heidelberg, 1995. Zbl0828.58002MR1367287
  11. [11] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer Verlag, New York, 1983. Zbl0516.47023MR710486
  12. [12] J. Weidmann, Linear Operators in Hilbert Spaces, Springer Verlag, Berlin, 1980. Zbl0434.47001MR566954
  13. [13] K. Yosida, Functional Analysis, Springer Verlag, Berlin, 1971. Zbl0217.16001
  14. [14] G. Schwarz and J. Śniatycki, "Yang-Mills and Dirac fields in a bag, existence and uniqueness theorems", Comm. Math. Phys., Vol. 168, 1995, pp. 441-453. Zbl0826.53057MR1324405
  15. [15] J. Śniatycki, G. Schwarz and L. Bates, "Yang-Mills and Dirac fields in a bag, constraints and reduction", Comm. Math. Phys., Vol. 176, 1996, pp. 95-117. Zbl0852.58080MR1372819
  16. [16] I. Segal, "Non-linear semigroups", Ann. Math., Vol. 78, 1963, pp. 339-364. Zbl0204.16004MR152908
  17. [17] G. Schwarz and J. Śniatycki, "The Hamiltonian evolution of Yang-Mills and Dirac fields", Acta Phys. Pol. B 27, No. 4, 1-12 (1996). Zbl0966.58502
  18. [18] W. Von Wahl, "Analytische Abbildungen und semilineare Differentialgleichungen in Banachräumen", Nachr. Akad. Wiss. Göttingen, II, math.-phys. Klasse, 1979, pp. 1-48. Zbl0433.34047MR568805
  19. [19] J. Eichhorn, "Gauge theory of open manifolds of bounded geometry", Ann. Global Anal. Geom., Vol. 11, 1993, pp. 253-300. Zbl0840.58014MR1175322
  20. [20] A. Weil, Sur les espaces a structures uniformes, Act. Sci. Ind., 551, Hermann, Paris, 1938. Zbl0019.18604
  21. [21] S. Lang, Differential and Riemannian Manifolds, Springer Verlag, New York, 1995. Zbl0824.58003MR1335233
  22. [22] G. Schwarz and J. Śniatycki, "The constraint set of the Yang-Mills-Dirac theory in the Minkowski space", in preparation. Zbl0966.58502
  23. [23] J. Śniatycki and G. Schwarz [94], "An invariance argument for confinement", Rep. Math. Phys., 34, 1994, pp. 311-324. Zbl0831.58056MR1339468
  24. [24] C. Amrouche, V. Girault and J. Giroire, "Weighted Sobolev spaces for Laplace's equation in IRn", J. Math. Pures Appl., Vol. 73, 1994, pp. 579-606. Zbl0836.35038MR1309165

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.