Regularity of constraints and reduction in the Minkowski space Yang-Mills-Dirac theory
Annales de l'I.H.P. Physique théorique (1999)
- Volume: 70, Issue: 3, page 277-293
- ISSN: 0246-0211
Access Full Article
topHow to cite
topŚniatycki, Jedrzej. "Regularity of constraints and reduction in the Minkowski space Yang-Mills-Dirac theory." Annales de l'I.H.P. Physique théorique 70.3 (1999): 277-293. <http://eudml.org/doc/76816>.
@article{Śniatycki1999,
author = {Śniatycki, Jedrzej},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Banach manifolds; constraints; nonlinear partial differential equations; reduction; Yang-Mills fields; Dirac fields},
language = {eng},
number = {3},
pages = {277-293},
publisher = {Gauthier-Villars},
title = {Regularity of constraints and reduction in the Minkowski space Yang-Mills-Dirac theory},
url = {http://eudml.org/doc/76816},
volume = {70},
year = {1999},
}
TY - JOUR
AU - Śniatycki, Jedrzej
TI - Regularity of constraints and reduction in the Minkowski space Yang-Mills-Dirac theory
JO - Annales de l'I.H.P. Physique théorique
PY - 1999
PB - Gauthier-Villars
VL - 70
IS - 3
SP - 277
EP - 293
LA - eng
KW - Banach manifolds; constraints; nonlinear partial differential equations; reduction; Yang-Mills fields; Dirac fields
UR - http://eudml.org/doc/76816
ER -
References
top- [1] I. Segal, The Cauchy problem for the Yang-Mills equations, J. Funct. Anal., Vol. 33, 1979, pp. 175-194. Zbl0416.58027MR546505
- [2] J. Ginibre and G. Velo, The Cauchy problem for coupled Yang-Mills and scalar fields in the temporal gauge, Commun. Math. Phys., Vol. 82, 1981, pp. 1-28. Zbl0486.35048MR638511
- [3] J. Ginibre and G. Velo, The Cauchy problem for coupled Yang-Mills and scalar fields in the Lorentz gauge, Ann. Inst. H. Poincaré, Vol. 36, 1982, pp. 59-78. Zbl0486.35049MR653018
- [4] D.M. Eardley and V. Moncrief, The global existence of Yang-Mills-Higgs fields in 4-dimensional Minkowski space, Comm. Math. Phys., Vol. 83, 1982, pp. 171-191. Zbl0496.35061MR649158
- [5] D.M. Eardley and V. Moncrief, The global existence of Yang-Mills-Higgs fields in 4-dimensional Minkowski space, Comm. Math. Phys., Vol. 83, 1982, pp. 193-212. Zbl0496.35062MR649159
- [6] Y. Choquet-Bruhat and D. Christodoulou, Existence of global solutions of the Yang-Mills, Higgs and spinor field equations in 3+1 dimensions, Ann. Sci. École Norm. Sup., Vol. 14, 1981, pp. 481-506. Zbl0499.35076MR654209
- [7] S. Klainerman and M. Machedon, Finite energy solutions of the Yang-Mills equations in R3+1, Ann. Math., Vol. 142, 1995, pp. 39-119. Zbl0827.53056MR1338675
- [8] V. Moncrief, Gribov degeneracies: Coulomb gauge condition and initial value constraints, J. Math. Phys., Vol. 20, 1979, pp. 579-585. Zbl0416.58008MR529721
- [9] G. Schwarz and J. Śniatycki, Gauge symmetries of an extended phase space for Yang-Mills and Dirac fields, Ann. Inst. Henri Poincaré, Vol. 66, 1996, pp. 109-136. Zbl0889.58089MR1434116
- [10] S. Lang, Differential and Riemannian Manifolds, Springer, New York, 1995. Zbl0824.58003MR1335233
- [11] T. Kato, Perturbation Theory for Linear Operators, Springer Verlag, Berlin, Heidelberg, New York, 1984. Zbl0531.47014
- [12] J. Śniatycki, Regularity of constraints in the Minkowski space Yang-Mills theory, Comm. Math. Phys., Vol. 141, 1991, pp. 593-597. Zbl0734.53026MR1134941
- [13] J. Śniatycki, G. Schwarz and L. Bates, Yang-Mills and Dirac fields in a bag, constraints and reduction, Comm. Math. Phys., Vol. 176, 1996, pp. 95-115. Zbl0852.58080MR1372819
- [14] P. Mitter and C. Viallet, On the bundle of connections and the gauge orbit manifold in Yang-Mills theory, Comm. Math. Phys., Vol. 79, 1981, pp. 457-472. Zbl0474.58004MR623962
- [15] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. 2, Academic Press, New York, 1975. Zbl0308.47002
- [16] R. Adams, Sobolev Spaces, Academic Press, Orlando, Florida, 1975. Zbl0314.46030
- [17] K. Uhlenbeck, Removable singularities in Yang-Mills fields, Comm. Math. Phys., Vol. 83, 1982, pp. 11-29. Zbl0491.58032MR648355
- [18] R. Palais, On the existence of slices for actions of non-compact Lie groups, Ann. Math., Vol. 73, 1961, pp. 295-323. Zbl0103.01802MR126506
- [19] J. Arms, J.E. Marsden and V. Moncrief, Symmetry and bifurcation of momentum maps, Comm. Math. Phys., Vol. 90, 1981, pp. 361-372.
- [20] R. Cushman and L. Bates, Global Aspects of Classical Integrable Systems, Birkhäuser Verlag, Basel, Boston, Berlin, 1997. Zbl0882.58023MR1438060
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.