Regularity of constraints and reduction in the Minkowski space Yang-Mills-Dirac theory

Jedrzej Śniatycki

Annales de l'I.H.P. Physique théorique (1999)

  • Volume: 70, Issue: 3, page 277-293
  • ISSN: 0246-0211

How to cite

top

Śniatycki, Jedrzej. "Regularity of constraints and reduction in the Minkowski space Yang-Mills-Dirac theory." Annales de l'I.H.P. Physique théorique 70.3 (1999): 277-293. <http://eudml.org/doc/76816>.

@article{Śniatycki1999,
author = {Śniatycki, Jedrzej},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Banach manifolds; constraints; nonlinear partial differential equations; reduction; Yang-Mills fields; Dirac fields},
language = {eng},
number = {3},
pages = {277-293},
publisher = {Gauthier-Villars},
title = {Regularity of constraints and reduction in the Minkowski space Yang-Mills-Dirac theory},
url = {http://eudml.org/doc/76816},
volume = {70},
year = {1999},
}

TY - JOUR
AU - Śniatycki, Jedrzej
TI - Regularity of constraints and reduction in the Minkowski space Yang-Mills-Dirac theory
JO - Annales de l'I.H.P. Physique théorique
PY - 1999
PB - Gauthier-Villars
VL - 70
IS - 3
SP - 277
EP - 293
LA - eng
KW - Banach manifolds; constraints; nonlinear partial differential equations; reduction; Yang-Mills fields; Dirac fields
UR - http://eudml.org/doc/76816
ER -

References

top
  1. [1] I. Segal, The Cauchy problem for the Yang-Mills equations, J. Funct. Anal., Vol. 33, 1979, pp. 175-194. Zbl0416.58027MR546505
  2. [2] J. Ginibre and G. Velo, The Cauchy problem for coupled Yang-Mills and scalar fields in the temporal gauge, Commun. Math. Phys., Vol. 82, 1981, pp. 1-28. Zbl0486.35048MR638511
  3. [3] J. Ginibre and G. Velo, The Cauchy problem for coupled Yang-Mills and scalar fields in the Lorentz gauge, Ann. Inst. H. Poincaré, Vol. 36, 1982, pp. 59-78. Zbl0486.35049MR653018
  4. [4] D.M. Eardley and V. Moncrief, The global existence of Yang-Mills-Higgs fields in 4-dimensional Minkowski space, Comm. Math. Phys., Vol. 83, 1982, pp. 171-191. Zbl0496.35061MR649158
  5. [5] D.M. Eardley and V. Moncrief, The global existence of Yang-Mills-Higgs fields in 4-dimensional Minkowski space, Comm. Math. Phys., Vol. 83, 1982, pp. 193-212. Zbl0496.35062MR649159
  6. [6] Y. Choquet-Bruhat and D. Christodoulou, Existence of global solutions of the Yang-Mills, Higgs and spinor field equations in 3+1 dimensions, Ann. Sci. École Norm. Sup., Vol. 14, 1981, pp. 481-506. Zbl0499.35076MR654209
  7. [7] S. Klainerman and M. Machedon, Finite energy solutions of the Yang-Mills equations in R3+1, Ann. Math., Vol. 142, 1995, pp. 39-119. Zbl0827.53056MR1338675
  8. [8] V. Moncrief, Gribov degeneracies: Coulomb gauge condition and initial value constraints, J. Math. Phys., Vol. 20, 1979, pp. 579-585. Zbl0416.58008MR529721
  9. [9] G. Schwarz and J. Śniatycki, Gauge symmetries of an extended phase space for Yang-Mills and Dirac fields, Ann. Inst. Henri Poincaré, Vol. 66, 1996, pp. 109-136. Zbl0889.58089MR1434116
  10. [10] S. Lang, Differential and Riemannian Manifolds, Springer, New York, 1995. Zbl0824.58003MR1335233
  11. [11] T. Kato, Perturbation Theory for Linear Operators, Springer Verlag, Berlin, Heidelberg, New York, 1984. Zbl0531.47014
  12. [12] J. Śniatycki, Regularity of constraints in the Minkowski space Yang-Mills theory, Comm. Math. Phys., Vol. 141, 1991, pp. 593-597. Zbl0734.53026MR1134941
  13. [13] J. Śniatycki, G. Schwarz and L. Bates, Yang-Mills and Dirac fields in a bag, constraints and reduction, Comm. Math. Phys., Vol. 176, 1996, pp. 95-115. Zbl0852.58080MR1372819
  14. [14] P. Mitter and C. Viallet, On the bundle of connections and the gauge orbit manifold in Yang-Mills theory, Comm. Math. Phys., Vol. 79, 1981, pp. 457-472. Zbl0474.58004MR623962
  15. [15] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. 2, Academic Press, New York, 1975. Zbl0308.47002
  16. [16] R. Adams, Sobolev Spaces, Academic Press, Orlando, Florida, 1975. Zbl0314.46030
  17. [17] K. Uhlenbeck, Removable singularities in Yang-Mills fields, Comm. Math. Phys., Vol. 83, 1982, pp. 11-29. Zbl0491.58032MR648355
  18. [18] R. Palais, On the existence of slices for actions of non-compact Lie groups, Ann. Math., Vol. 73, 1961, pp. 295-323. Zbl0103.01802MR126506
  19. [19] J. Arms, J.E. Marsden and V. Moncrief, Symmetry and bifurcation of momentum maps, Comm. Math. Phys., Vol. 90, 1981, pp. 361-372. 
  20. [20] R. Cushman and L. Bates, Global Aspects of Classical Integrable Systems, Birkhäuser Verlag, Basel, Boston, Berlin, 1997. Zbl0882.58023MR1438060

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.