From resonances to master equations

Vojkan Jakšić; Claude-Alain Pillet

Annales de l'I.H.P. Physique théorique (1997)

  • Volume: 67, Issue: 4, page 425-445
  • ISSN: 0246-0211

How to cite

top

Jakšić, Vojkan, and Pillet, Claude-Alain. "From resonances to master equations." Annales de l'I.H.P. Physique théorique 67.4 (1997): 425-445. <http://eudml.org/doc/76775>.

@article{Jakšić1997,
author = {Jakšić, Vojkan, Pillet, Claude-Alain},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {quantum friction; master equation; open system; Markov approximation; spin-boson model},
language = {eng},
number = {4},
pages = {425-445},
publisher = {Gauthier-Villars},
title = {From resonances to master equations},
url = {http://eudml.org/doc/76775},
volume = {67},
year = {1997},
}

TY - JOUR
AU - Jakšić, Vojkan
AU - Pillet, Claude-Alain
TI - From resonances to master equations
JO - Annales de l'I.H.P. Physique théorique
PY - 1997
PB - Gauthier-Villars
VL - 67
IS - 4
SP - 425
EP - 445
LA - eng
KW - quantum friction; master equation; open system; Markov approximation; spin-boson model
UR - http://eudml.org/doc/76775
ER -

References

top
  1. [A1] H. Araki, Relative Hamiltonian for faithful normal states of a von Neumann algebra. Pub. R.I.M.S. Kyoto Univ. Vol. 9, 1973, p. 165. Zbl0273.46054MR342080
  2. [A2] H. Araki, Positive cone, Radon-Nikodym theorems, relative Hamiltonian and the Gibbs condition in statistical mechanics. An application of the Tomita-Takesaki theory, in C*-Algebras and Their Applications to Statistical Mechanics and Quantum Field Theory, D. Kastler, ed., Editrice Composition, Bologna (1975). Zbl0392.46043MR675642
  3. [AW] H. Araki and E.J. Woods, Representation of the canonical commutation relations describing a non relativistic infinite free Bose gas. J. Math. Phys., Vol. 4, 1963, p. 637. MR152295
  4. [AC] J. Aguilar, and J.M. Combes, A class of analytic perturbations for one-body Schrödinger Hamiltonians. Commun. Math. Phys., 22, 1971, p. 269. Zbl0219.47011MR345551
  5. [BC] E. Balslev and J.M. Combes, Spectral properties of many-body Schrödinger operators with dilation analytic interactions. Commun. Math. Phys., Vol. 22, 1971, p. 280. Zbl0219.47005MR345552
  6. [BL] F. Bloch, Phys. Rev., 70, 1946, p. 460. 
  7. [BLW] F. Bloch and R.K. Wangsness, Phys. Rev., Vol. 89 (1953), p. 728. Zbl0051.22302
  8. [BR1] O. Bratteli and D. Robinson, Operator Algebras and Quantum Statistical Mechanics I. Springer-Verlag, New York, 1979. Zbl0421.46048MR611508
  9. [BR2] O. Bratteli and D. Robinson, Operator Algebras and Quantum Statistical Mechanics II. Springer-Verlag, New York, 1981. Zbl0463.46052MR611508
  10. [D1] E.B. Davies, Markovian master equations. Commun. Math. Phys., Vol. 39, 1974, p. 91. Zbl0294.60080MR359633
  11. [D2] E.B. Davies, Markovian master equations. II. Math. Ann., Vol. 219 (1976), p. 147. Zbl0323.60061MR395638
  12. [D3] E.B. Davies, Quantum Theory of Open Systems. Academic Press, London, 1976. Zbl0388.46044MR489429
  13. [FNV] M. Fannes, B. Nachtergaele and A. Verbeure, The equilibrium states of the spin-boson model. Commun. Math. Phys., Vol. 114, 1988, p. 537. Zbl0653.46064MR929128
  14. [H] R. Haag, Local Quantum Physics, Springer-Verlag, Berlin, 1993. Zbl0843.46052MR1182152
  15. [HA] F. Haake, Statistical treatment of open systems by generalized master equations. Springer tracts in modern physics, Vol. 66. 
  16. [JP1] V Jakvšić and C.-A. Pillet, On a model for quantum friction II. Fermi's golden rule and dynamics at positive temperature. Commun. Math. Phys., Vol. 176 (1996), p. 619. Zbl0852.47038MR1376434
  17. [JP2] V Jakšić and C.-A. Pillet, On a model for quantum friction III. Ergodic properties of the spin-boson system. Commun. Math. Phys., Vol. 178, 1996, p. 627. Zbl0864.47049MR1395208
  18. [JP3] V Jakvšić and C.-A. Pillet, On a model for quantum friction IV. Matter and radiation at positive temperature. In preparation. 
  19. [KTH] R. Kubo, M. Toda and N. Hashitsume, Statistical Physics II. Nonequilibrium Statistical Mechanics. Springer-Verlag, Berlin, 1985. Zbl0996.60501MR799025
  20. [LCD] A.J. Legget, Chakravarty S., Dorsey A.T., Fisher M.P.A., Garg A. and Zwerger W., Dynamics of the dissipative two-state system. Rev. Mod. Phys., Vol. 59, 1987, p. 1. 
  21. [M] E.W. Montrol, Nonequilibrium Statistical Mechanics. Lectures in Theor. Phys., Vol. 3, p. 221. MR127891
  22. [N] S. Nakajima, On quantum theory of transport phenomena. Prog. Theor. Phys., Vol. 20, p. 948. Zbl0084.21505MR102943
  23. [P1] W. Pauli, Festschrift zum 60. Gerburtstage A. Sommerfeld, S.30. Leipzig, Hirzel, 1928. 
  24. [P2] W. Pauli, Pauli Lectures on Physics: Volume 4.Statistical Mechanics Edited by C.P. Enz. Cambridge, The MIT Press1973. 
  25. [PR] I. Prigogine and P. Resibois, On the kinetics of the approach to equilibrium. Physica, Vol. 27, p. 629. Zbl0082.19306MR129869
  26. [PU] J.V. Pulé, The Bloch Equations. Commun. Math. Phys., Vol. 38, 1974, p. 241. MR359650
  27. [RO1] D.W. Robinson, C*-algebras and quantum statistical mechanics, in C*-Algebras and Their Applications to Statistical Mechanics and Quantum Field Theory, D. Kastler, ed., Editrice Composition, Bologna, 1975. 
  28. [RO2] D.W. Robinson, Return to equilibrium. Commun. Math. Phys., Vol. 31, 1973, p. 171. Zbl0257.46091MR332078
  29. [SD] H. Spohn and R. Dümcke, The proper form of the generator in the weak coupling limit. Z. Physik B, Vol. 34, 1979, p. 419. 
  30. [SI] B. Simon, Resonances in N-body quantum systems with dilation analytic potentials and the foundations of time-dependent perturbation theory. Ann. Math., Vol. 97, 1973, p. 247. Zbl0252.47009MR353896
  31. [VH1] L. van Hove, Quantum-mechanical perturbations giving rise to a statistical transport equation. Physica, Vol. 21, p. 517. Zbl0065.19505MR71346
  32. [VH2] L. van Hove, The approach to equilibrium in quantum statistics. Physica, Vol. 23, p. 441. Zbl0079.19405MR89576
  33. [VH3] L. van Hove, Master equation and approach to equilibrium for quantum systems. In Fundamental problems in statistical mechanics, compiled by E.G.D. Cohen, North-Holland, Amsterdam, 1962. 
  34. [Z1] R. Zwanzig, Statistical mechanics of irreversibility. Lectures in Theor. Phys, Vol. 3, p. 106. MR127892
  35. [Z2] R. Zwanzig, On the identity of three generalized master equations. Physica, Vol. 30, p. 1109. MR183452

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.