N-Body quantum systems with singular potentials

Marcel Griesemer

Annales de l'I.H.P. Physique théorique (1998)

  • Volume: 69, Issue: 2, page 135-187
  • ISSN: 0246-0211

How to cite

top

Griesemer, Marcel. "N-Body quantum systems with singular potentials." Annales de l'I.H.P. Physique théorique 69.2 (1998): 135-187. <http://eudml.org/doc/76798>.

@article{Griesemer1998,
author = {Griesemer, Marcel},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {N-body Schrödinger operators; singular potentials; hard cores; asymptotic completeness; Mourre estimate; decay of wave functions; non-threshold bound states; Mourre inequality},
language = {eng},
number = {2},
pages = {135-187},
publisher = {Gauthier-Villars},
title = {N-Body quantum systems with singular potentials},
url = {http://eudml.org/doc/76798},
volume = {69},
year = {1998},
}

TY - JOUR
AU - Griesemer, Marcel
TI - N-Body quantum systems with singular potentials
JO - Annales de l'I.H.P. Physique théorique
PY - 1998
PB - Gauthier-Villars
VL - 69
IS - 2
SP - 135
EP - 187
LA - eng
KW - N-body Schrödinger operators; singular potentials; hard cores; asymptotic completeness; Mourre estimate; decay of wave functions; non-threshold bound states; Mourre inequality
UR - http://eudml.org/doc/76798
ER -

References

top
  1. [1] S. Agmon, Lectures on exponential decay of solutions of second order elliptic equations: bounds on eigenfunctions of N-body Schrödinger operators. Mathematical Notes29, Princeton University Press, University of Tokyo Press1982. Zbl0503.35001MR745286
  2. [2] W.O. Amrein, A. Boutet de Monvel, V. Georgescu, C0-Groups, commutator methods and spectral theory for N-body Hamiltonians. Progress in Mathematics, vol. 135, Birkhäuser, 1996. Zbl0962.47500MR1388037
  3. [3] A. Boutet de Monvel-Berthier, V. Georgescu, A. Soffer, N-body Hamiltonians with hard-core interactions., Rev. Math. Phys., Vol. 6, 1994, pp. 515-596. Zbl0818.35094MR1290689
  4. [4] H.L. Cycon, R.G. Froese, W. Kirsch, B. Simon, Schrödinger operators. Springer1987. Zbl0619.47005
  5. [5] V. Enss, A note on Hunziker's theorem., Commun. Math. Phys., Vol. 52, 1977, pp. 233-238. MR446195
  6. [6] P. Ferrero, O. Pazzis, D.W. Robinson, Scattering theory with singular potentials. II. The N-body problem and hard cores. Ann. Inst. Poincaré. Vol. 21, 1974, pp. 217-231. MR377305
  7. [7] R. Froese, I. Herbst, A new proof of the Mourre estimate., Duke Math. J., Vol. 49, 1982, 1075-1085. Zbl0514.35025MR683011
  8. [8] R. Froese, I. Herbst, Exponential bounds and absence of positive eigenvalues for N-body Schrödinger operators., Commun. Math. Phys., Vol. 87, 1982, pp. 429-447. Zbl0509.35061MR682117
  9. [9] G.M. Graf, Asymptotic completeness for N-body short-range quantum systems: A new proof., Commun. Math. Phys., Vol. 132, 1990, pp. 73-102. Zbl0726.35096MR1069201
  10. [10] G.M. Graf, D. Schenker, Classical action and quantum N-body asymptotic completeness. To appear in the IMA Volumes in Mathematics and its Applications, Springer Zbl0874.47039MR1487919
  11. [11] G.M. Graf, unpublished notes. 
  12. [12] M. Griesemer, N-body quantum systems with hard-core interactions. ETH thesis No. 11644, 1996. 
  13. [13] B. Helffer, J. Sjöstrand, Equation de Schrödinger avec champs magnétic et équation de Harper. in Schrödinger operators, ed. by H. Holden, A. Jensen. Lecture notes in physics, vol 345, 1988. Zbl0699.35189
  14. [14] W. Hunziker, Time-dependent scattering theory for singular potentials., Helv. Phys. Acta., Vol. 40, 1967, pp. 1052-1062. Zbl0152.46303
  15. [15] W. Hunziker, I.M. Sigal, The general theory of N-body quantum systems. in Mathematical quantum theory. II. Schrödinger operators, J. Feldmann et al. eds., AMS-publ., 1994. Zbl0821.35036MR1332036
  16. [16] A. Iftimovici, Hard-core scattering for N-body systems., Math. Phys. Anal. Geom., Vol. 1, 1994, pp. 265-313. Zbl0834.35106MR1484652
  17. [17] T. Kato, Perturbation theory for linear operators. Berlin, Heidelberg, New York: Springer1976 (second edition). Zbl0342.47009MR407617
  18. [18] P. Perry, Exponential bounds and semi-finiteness of point spectrum for N-body Schrödinger operators., Commun. Math. Phys., Vol. 92, 1984, pp. 481-483. Zbl0546.35051MR736405
  19. [19] M. Reed, B. Simon, Methods of modem mathematical physics. I-IV.New York: Academic Press 
  20. [20] I.M. Sigal, A. Soffer, The N-particle scattering problem: asymptotic completeness for short-range systems., Annals of Math., Vol. 126, 1987, pp. 35-108. Zbl0646.47009MR898052
  21. [21] E. Skibsted, Propagation estimates for N-body Schrödinger operators., Commun. Math. Phys., Vol. 142, 1991, pp. 67-98. Zbl0760.35035MR1137775
  22. [22] D. Yafaev, Radiation condition and scattering theory for N-particle Hamiltonians, Commun. Math. Phys., Vol. 154, 1993, pp. 523-554. Zbl0781.35048MR1224090

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.