Relativistic and nonrelativistic elastodynamics with small shear strains
Annales de l'I.H.P. Physique théorique (1998)
- Volume: 69, Issue: 3, page 275-307
- ISSN: 0246-0211
Access Full Article
topHow to cite
topTahvildar-Zadeh, A. Shadi. "Relativistic and nonrelativistic elastodynamics with small shear strains." Annales de l'I.H.P. Physique théorique 69.3 (1998): 275-307. <http://eudml.org/doc/76802>.
@article{Tahvildar1998,
author = {Tahvildar-Zadeh, A. Shadi},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {stability of double characteristic manifold; isotropic hyperelastic solids; shear strain tensor; geometry of characteristics; cotangent bundle; nonrelativistic limit; global existence; small-amplitude elastic waves; formation of singularities},
language = {eng},
number = {3},
pages = {275-307},
publisher = {Gauthier-Villars},
title = {Relativistic and nonrelativistic elastodynamics with small shear strains},
url = {http://eudml.org/doc/76802},
volume = {69},
year = {1998},
}
TY - JOUR
AU - Tahvildar-Zadeh, A. Shadi
TI - Relativistic and nonrelativistic elastodynamics with small shear strains
JO - Annales de l'I.H.P. Physique théorique
PY - 1998
PB - Gauthier-Villars
VL - 69
IS - 3
SP - 275
EP - 307
LA - eng
KW - stability of double characteristic manifold; isotropic hyperelastic solids; shear strain tensor; geometry of characteristics; cotangent bundle; nonrelativistic limit; global existence; small-amplitude elastic waves; formation of singularities
UR - http://eudml.org/doc/76802
ER -
References
top- [1] E. Bernardi and T. Nishitani, Remarks on symmetrization of 2 x 2 systems and the characteristic manifolds. Osaka J. Math., Vol. 29, 1992, pp. 129-134. Zbl0764.35058MR1153184
- [2] B. Carter and H. Quintana, Foundations of general relativistic high-pressure elasticity theory. Proc. R. Soc. Lond., A. 331, 1972, pp. 57-83. Zbl0249.73093MR311270
- [3] D. Christodoulou, Lecture notes of course taught at Princeton University, Fall 1995.
- [4] D. Christodoulou, Self-gravitating relativistic fluids: A two-phase model. Arch. RationalMech. Anal., Vol. 130, 1995, pp. 343-400. Zbl0841.76097MR1346362
- [5] D. Christodoulou, On the geometry and dynamics of crystalline continua. Ann. Inst. H. Poincaré Phys. Théor, to appear. Zbl0916.73013MR1648987
- [6] G.F.D. Duff, The Cauchy problem for elastic waves in an anisotropic medium. Phil. Trans. Roy. Soc. A., Vol. 252, 1960, pp. 249-273. Zbl0103.42502MR111293
- [7] L. Hörmander, Hyperbolic systems with double characteristics. Comm. Pure. Appl. Math., Vol. 46, 1993, pp. 261-301. Zbl0803.35082MR1199200
- [8] F. John, Algebraic conditions for hyperbolicity of systems of partial differential equations. Comm. Pure. Appl. Math., Vol. 31, 1978, pp. 89-106. Zbl0381.35059
- [9] F. John, Formation of singularities in elastic waves. Lec. Notes in Phys., Vol. 195, 1984, pp. 190-214. Zbl0563.73022
- [10] J. Kijowski and G. Magli, Relativistic elastomechanics as a Lagrangian field theory. Journal of Geometry and Physics, Vol. 9, 1992, pp. 207-223. Zbl0771.73004
- [11] S. Klainerman, Long-time behavior of solutions to nonlinear evolution equations. Arch. Rational Mech. Anal, Vol. 78(1), 1982, pp. 73-98. Zbl0502.35015
- [12] G.A. Maugin, Exact relativistic theory of wave propagation in prestressed nonlinear elastic solids. Ann. Inst. H. Poincaré Phys. Théor., Vol. 28, 1978, p. 155-185. Zbl0375.73025
- [13] T.C. Sideris, Formation of singularities in three-dimensional compressible fluids. Comm. Math. Phys., Vol. 101, 1985, pp. 475-485. Zbl0606.76088
- [14] T.C. Sideris, The null condition and global existence of nonlinear elastic waves. Invent. Math., Vol. 123, 1996, pp. 323-342. Zbl0844.73016
- [15] J.M. Souriau, Géométrie et Relativité. Hermann, Paris, 1964. Zbl0117.22204
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.