Calculation of the Hall conductivity by Abel limit

Fumihiko Nakano

Annales de l'I.H.P. Physique théorique (1998)

  • Volume: 69, Issue: 4, page 441-455
  • ISSN: 0246-0211

How to cite

top

Nakano, Fumihiko. "Calculation of the Hall conductivity by Abel limit." Annales de l'I.H.P. Physique théorique 69.4 (1998): 441-455. <http://eudml.org/doc/76808>.

@article{Nakano1998,
author = {Nakano, Fumihiko},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Hall conductivity; relaxation time approximation; non-diagonal component of the conductivity tensor; two-dimensional electron system in a uniform magnetic field; Bellissard's theory; Abel limit},
language = {eng},
number = {4},
pages = {441-455},
publisher = {Gauthier-Villars},
title = {Calculation of the Hall conductivity by Abel limit},
url = {http://eudml.org/doc/76808},
volume = {69},
year = {1998},
}

TY - JOUR
AU - Nakano, Fumihiko
TI - Calculation of the Hall conductivity by Abel limit
JO - Annales de l'I.H.P. Physique théorique
PY - 1998
PB - Gauthier-Villars
VL - 69
IS - 4
SP - 441
EP - 455
LA - eng
KW - Hall conductivity; relaxation time approximation; non-diagonal component of the conductivity tensor; two-dimensional electron system in a uniform magnetic field; Bellissard's theory; Abel limit
UR - http://eudml.org/doc/76808
ER -

References

top
  1. [AS] J.E. Avron and R. Seiler, Quantization of the Hall conductance for general multiparticle Schrödinger Hamiltonians, Phys. Rev. Lett., Vol. 54, 1985, pp. 259-262. MR773033
  2. [ASS] J.E. Avron, R. Seiler, and B. Simon, Charge deficiency, charge transport and comparison of dimensions, Commun. Math. Phys., Vol. 159, 1994, pp. 399-422. Zbl0822.47056MR1256994
  3. [ASY] J.E. Avron, R. Seiler and L.G. Yaffe, Adiabatic theorems and applications to the quantum Hall effect, Vol. 110, 1987, pp. 33-49. Zbl0626.58033MR885569
  4. [B1] J. Bellissard, Ordinary quantum Hall effect and non-commutative cohomology, in Proceedings of the Bad Schandau conference on localization, W. WELLER, P. ZIECHE, Eds., Teubner-Verlag, Leipzig, 1987. 
  5. [B2] J. Bellissard, A. van Elst, H. Schultz-Baldes, The non-commutative geometry of the quantum Hall effect, J. Math. Phys., Vol. 35 (10), 1994, pp. 5373-5451. Zbl0824.46086MR1295473
  6. [B3] J. Bellissard, Gap labeling theorems for Schrödinger operators, in from number theory to physics, M. WALDSCHMIDT, P. MOUSSA, J. LUCK, C. ITZYKSON Eds., Springer-Verlag, Berlin, 1991. Zbl0833.47056MR1221111
  7. [JN] A. Jensen and S. Nakamura, Mapping properties of functions of Schrödinger operators between Sobolev spaces and Besov spaces, Advanced Studies in Pure Math., Vol. 23, 1994, pp. 187-210. Zbl0815.47012
  8. [L] R.B. Laughlin, Quantized hall conductivity in two dimensions, Phys. Rev., Vol. B23, 1981, p. 5632. 
  9. [NB] S. Nakamura and J. Bellissard, Low energy bands do not contribute to quantum Hall effect, Commun. Math. Phys., Vol. 31, 1990, pp. 283-305. Zbl0707.46050MR1065673
  10. [S] S. Simon, Schrödinger semigroups, Bull. Amer. Mech. Sci., Vol. 7, 1982, pp. 447-526. Zbl0524.35002MR670130
  11. [TKNN] D. Thouless, M. Kohmoto, M. Nightingale and M. den Nijis, Quantum Hall conductance in a two dimensional periodic potential, Phys. Rev. Lett, Vol. 49, 1982, p.40. 
  12. [Y] K. Yajima, The Wk,p-continuity of wave operators for Schrödinger operators III, even dimensional cases m ≥ 4, J. Math. Sci. Univ. of Tokyo, Vol. 2, 1995, pp. 311-346. Zbl0841.47009MR1366561

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.