Band edge localization and the density of states for acoustic and electromagnetic waves in random media

J. M. Combes; P. D. Hislop; A. Tip

Annales de l'I.H.P. Physique théorique (1999)

  • Volume: 70, Issue: 4, page 381-428
  • ISSN: 0246-0211

How to cite

top

Combes, J. M., Hislop, P. D., and Tip, A.. "Band edge localization and the density of states for acoustic and electromagnetic waves in random media." Annales de l'I.H.P. Physique théorique 70.4 (1999): 381-428. <http://eudml.org/doc/76821>.

@article{Combes1999,
author = {Combes, J. M., Hislop, P. D., Tip, A.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {pure point spectrum; Schrödinger operators; spectral gap in energy spectrum; random scatterers; random perturbations; dielectric function; sound speed; Anderson-type potentials; Wegner estimate},
language = {eng},
number = {4},
pages = {381-428},
publisher = {Gauthier-Villars},
title = {Band edge localization and the density of states for acoustic and electromagnetic waves in random media},
url = {http://eudml.org/doc/76821},
volume = {70},
year = {1999},
}

TY - JOUR
AU - Combes, J. M.
AU - Hislop, P. D.
AU - Tip, A.
TI - Band edge localization and the density of states for acoustic and electromagnetic waves in random media
JO - Annales de l'I.H.P. Physique théorique
PY - 1999
PB - Gauthier-Villars
VL - 70
IS - 4
SP - 381
EP - 428
LA - eng
KW - pure point spectrum; Schrödinger operators; spectral gap in energy spectrum; random scatterers; random perturbations; dielectric function; sound speed; Anderson-type potentials; Wegner estimate
UR - http://eudml.org/doc/76821
ER -

References

top
  1. [1] S. Agmon, Lectures on exponential decay of solutions of second-order elliptic equations, Mathematical Notes 29, Princeton University Press, Princeton, NJ, 1982. Zbl0503.35001MR745286
  2. [2] M. Aizenman, Localization at weak disorder: some elementary bounds, Rev. Math. Phys., Vol. 6, N° 5a, 1994, pp. 1163-1182. Zbl0843.47039MR1301371
  3. [3] J.-M. Barbaroux, thèse, Université de Toulon et du Var1997. 
  4. [4] J.-M. Barbaroux, J.M. Combes and P.D. Hislop, Localization near band edges for random Schrödinger operators, Helv. Phys. Acta, Vol. 70, 1997, pp. 16-43. Zbl0866.35077MR1441595
  5. [5] J.-M. Barbaroux, J.M. Combes and P.D. Hislop, Landau Hamiltonians with unbounded random potentials, Lett. Math. Phys., Vol. 40, 1997. Zbl0894.47028MR1453246
  6. [6] D. Belitz and T.R. Kirkpatrick, the Anderson-Mott Transition, Rev. of Modern Phys., Vol. 66, 1994, p. 261. 
  7. [7] M.S. Birman and M.Z. Solomjak, Spectral Theory of Self-Adjoint Operators in Hilbert Space, Dordrecht: D. Reidel Publishing Co, 1987. MR345774
  8. [8] J.-M. Combes and P.D. Hislop, Localization for some continuous random Hamiltonians in d-dimensions, J. Funct. Anal., Vol. 124, 1994, pp. 149-180. Zbl0801.60054MR1284608
  9. [9] J.-M. Combes and P.D. Hislop, Localization Properties of Continuous Disordered Systems in d-dimensions, Proc. of "Mathematical Quantum Theory", Vancouver, Canada, 1993. Zbl0820.60089MR1332042
  10. [10] J.-M. Combes, P.D. Hislop and E. Mourre, Spectral Averaging, Perturbation of Singular Spectra, and Localization, Trans. Amer. Math. Soc., Vol. 348, 1996, pp. 4883-4894. Zbl0868.35081MR1344205
  11. [11] J.-M. Combes, P.D. Hislop and E. Mourre, Correlated Wegner Inequalities for Long-range and Correlated Potentials, preprint 1997. 1997. 
  12. [12] R. Carmona and J. Lacroix, Spectral theory of random Schrödinger operators, Birkhäuser, Boston, 1990. Zbl0717.60074MR1102675
  13. [13] J.-M. Combes and L. Thomas, Asymptotic behavior of eigenfunctions for multiparticle Schrödinger operators, Commun. Math. Phys., Vol. 34, 1973, pp. 251-276. Zbl0271.35062MR391792
  14. [14] P.A. Deift and R. Hempel, On the existence of eigenvalues of the Schrödinger operator H + λW in a gap of σ(H), Commun. Math. Phys., Vol. 103, 1986, pp. 461-490. Zbl0594.34022MR832922
  15. [15] H.J.S. Dorren and A. Tip, Maxwell's equations for non-smooth media; fractal-shaped and pointlike objects, J. Math. Phys., Vol. 32, 1991, p. 3060. MR1131689
  16. [16] W. Faris, Localization for a random discrete wave equation, in Random Media, IMA Volume 7, G. Papanicolaou, ed., Springer-Verlag, New York, 1987. Zbl0656.35102MR901043
  17. [17] W. Faris, A localization principle for multiplicative perturbations, J. Funct. Anal., Vol. 67, 1986, pp. 105-114. Zbl0588.47016MR842605
  18. [18] A. Figotin and A. Klein, Localization phenomenon in gaps of the spectrum of random lattice operators, J. Stat. Phys., Vol. 75, 1994, pp. 997-1021. Zbl0838.47050MR1285295
  19. [19] A. Figotin and A. Klein, Localization of Electromagnetic and Acoustic Waves in Random Media: Lattice Models, J. Stat. Phys., Vol. 76, 1994, pp. 985-1003. Zbl0839.76077MR1299235
  20. [20] A. Figotin and A. Klein, Localization of Classical Waves I: Acoustic Waves, Commun. Math. Phys., Vol. 180, 1996, pp. 439-482. Zbl0878.35109MR1405959
  21. [21] A. Figotin and A. Klein, Localization of Classical Waves II: Electromagnetic Waves, Commun. Math. Phys., Vol. 184, 1997, pp. 411-441. Zbl0878.35110MR1462752
  22. [22] A. Figotin and P. Kuchment, Band-Gap structure of spectra of periodic dielectric and acoustic media. I. scalar Model, SIAM J. Appl. Math., Vol. 56, No. 1, 1996, pp. 68-88. Zbl0852.35014MR1372891
  23. [23] A. Figotin and P. Kuchment, Band-Gap structure of spectra of periodic dielectric and acoustic media. II. 2D Photonic Crystals, SIAM J. Appl. Math., Vol. 56, No. 6, 1996, pp. 1561-1620. Zbl0868.35009MR1417473
  24. [24] J. Frölich and T. Spencer, Absence of diffusion in the Anderson tight binding model for large disorder or low energy, Commun. Math. Phys., Vol. 88, 1983, pp. 151-184. Zbl0519.60066MR696803
  25. [25] F. Gesztesy, Some applications of commutation methods, in Schrödinger operators: Proc. of the Nordic Summer School in Mathematics held at Sandbjerg Slot, Sonderborg, Denmark, 1988, Lecture Notes in Physics No. 345, H. Holden and A. Jensen, eds., Berlin: Springer-Verlag1989. Zbl0716.35075MR1037318
  26. [26] J. Howland, Perturbation theory of dense point spectra, J. Funct. Anal., Vol. 74, 1987, pp. 52-80. Zbl0646.47011MR901230
  27. [27] S. John, The localization of light and other classical waves in disordered media, Comments Cond. Mat. Phys., Vol. 14, 1988, pp. 193-230. 
  28. [28] W. Kirsch and F. Martinelli, On the spectrum of Schrödinger operators with a random potential, Commun. Math. Phys., Vol. 85, 1982, pp. 329-350. Zbl0506.60058MR678150
  29. [29] W. Kirsch, P. Stollnian and G. Stoltz, Localization for random perturbations ofperiodic Schrödinger operators, preprint 1996. MR1381595
  30. [30] F. Klopp, Internal Lifshits tails for random perturbations of periodic Schrödinger operators, preprint 1997. Zbl1060.82509MR1695202
  31. [31] S. Kotani and B. Simon, Localization in general one-dimensional systems. II, Commun. Math. Phys., Vol. 112, 1987, pp. 103-120. Zbl0637.60080MR904140
  32. [32] P. Kuchment, Floquet Theory for Partial Differential Equations, Basel: Birkhäuser Verlag1993. Zbl0789.35002MR1232660
  33. [33] F.H. Lin, A uniqueness equation for parabolic equations, Comm. Pure Appl. Math., Vol. 43, 1990, pp. 127-136. Zbl0727.35063
  34. [34] L. Pastur and A. Figotin, Spectra of random and almost-periodic operators, Berlin: Springer-Verlag1992. Zbl0752.47002MR1223779
  35. [35] B. Simon, Trace ideals and their applications, Cambridge: Cambridge University Press1979. Zbl0423.47001MR541149
  36. [36] B. Sinion and T. Wolff, Singular continuous spectrum under rank one perturbation and localization for random Hamiltonians, Comm. Pure Appl. Math., Vol. 39, 1986, pp. 75-90. Zbl0609.47001MR820340
  37. [37] T. Spencer, Localization for random and quasi-periodic potentials, J. Stat. Phys., Vol. 51, 1988, pp. 1009-1019. Zbl1086.82547MR971043
  38. [38] P. Stollmann, Localization for random perturbations of anisotropic periodic media, to appear in Israel Journal of Mathematics1997. Zbl0918.35042MR1658543
  39. [39] D.V. Van Coevorden, R. Sprik, A. Tip and A. Lagendijk, Photonic Bandstructure of Atomic Lattices, Phys. Rev. Letters, Vol. 77, 1996, p. 2412. 
  40. [40] H. von Dreifus and A. Klein, A new proof of localization in the Anderson tight binding model, Commun. Math. Phys., Vol. 124, 1989, pp. 285-299. Zbl0698.60051MR1012868

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.