Randomly interacting particle systems : the uniqueness regime

G. Gielis; C. Maes; K. Vande Velde

Annales de l'I.H.P. Physique théorique (1999)

  • Volume: 70, Issue: 5, page 445-472
  • ISSN: 0246-0211

How to cite

top

Gielis, G., Maes, C., and Vande Velde, K.. "Randomly interacting particle systems : the uniqueness regime." Annales de l'I.H.P. Physique théorique 70.5 (1999): 445-472. <http://eudml.org/doc/76823>.

@article{Gielis1999,
author = {Gielis, G., Maes, C., Vande Velde, K.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {interacting particle systems; spatial disorder; Gibbs measure; spinflip dynamics; ergodicity},
language = {eng},
number = {5},
pages = {445-472},
publisher = {Gauthier-Villars},
title = {Randomly interacting particle systems : the uniqueness regime},
url = {http://eudml.org/doc/76823},
volume = {70},
year = {1999},
}

TY - JOUR
AU - Gielis, G.
AU - Maes, C.
AU - Vande Velde, K.
TI - Randomly interacting particle systems : the uniqueness regime
JO - Annales de l'I.H.P. Physique théorique
PY - 1999
PB - Gauthier-Villars
VL - 70
IS - 5
SP - 445
EP - 472
LA - eng
KW - interacting particle systems; spatial disorder; Gibbs measure; spinflip dynamics; ergodicity
UR - http://eudml.org/doc/76823
ER -

References

top
  1. [1] M. Bramson, R. Durrett and R.H. Schonman, The contact process in a random environment, Ann. Prob.19 (1991) 984-1009. Zbl0741.60097MR1112403
  2. [2] J. Van Den Berg and C. Maes, Disagreement percolation in the study of Markov fields, Ann. Prob.22 (1994) 749-763. Zbl0814.60096MR1288130
  3. [3] M. Campanino and A. Klein, Decay for two-point functions for (d + 1)- dimensional percolation, Ising and Potts model with d-dimensional disorder, Commun. Math. Phys.135 (1991) 483-497. Zbl0716.60127MR1091574
  4. [4] F. Cesi, C. Maes and F. Martinelli, Relaxation of disordered magnets in the Griffiths' regime, Preprint, 1996. Zbl0882.60095
  5. [5] F. Cesi, C. Maes and F. Martinelli, Relaxation to equilibrium for two dimensional disordered Ising systems in the Griffiths' phase, Preprint, 1996. Zbl0888.60090
  6. [6] H. De Jong and C. Maes, Extended application of constructive criteria for ergodicity of interacting particle systems, Int. J. Mod. Phys.7 (1996) 1-18. Zbl0940.60513MR1398310
  7. [7] A. Klein, Extinction of the contact process in a random environment, Ann. of Probab.22 (1994) 1227-1252. Zbl0814.60098MR1303643
  8. [8] G. Gielis and C. Maes, Percolation techniques in disordered spin flip dynamics: relaxation to the unique invariant measure, Commun. Math. Phys.177 (1995) 83- 101. Zbl0851.60096MR1382221
  9. [9] A. Guionnet and B. Zegarlinski, Decay to equilibrium on a random spin system on a lattice, Preprint, 1996. Zbl0882.60093MR1414307
  10. [10] A. Guionnet and B. Zegarlinski, Decay to equilibrium on a random spin system on a lattice II, Preprint, 1996. Zbl0882.60093MR1414307
  11. [11] T.M. Liggett, Interacting Particle Systems, Berlin, Springer, 1985. Zbl0559.60078MR776231
  12. [12] J.L. Lebowitz, C. Maes and E. Speer, Statistical mechanics of probabilistic cellullar automata, J. Stat. Phys.59 (1990) 117-170. Zbl1083.82522MR1049965
  13. [13] T.M. Liggett, The survival of one dimensional contact processes in random environments, Ann. of Probab.20 (1992) 696-723. Zbl0754.60126MR1159569
  14. [14] C. Maes, Coupling interacting particle systems, Rev. Math. Phys.5 (1993) 457- 475. Zbl0793.60112MR1240731
  15. [15] C. Maes and K. Vande Velde, The interaction potential of the stationary measure of a high-noise spinflip process, J. Math. Phys.34 (1993) 3030-3038. Zbl0776.60126MR1224195
  16. [16] W.G. Sullivan, Potentials for almost Markovian random fields, Commun. Math. Phys.33 (1973) 61-74. Zbl0267.60108MR410987
  17. [17] B. Zegarlinski, Strong decay to equilibrium in a one dimensional random spin system, J. Stat. Phys.77 (1994) 717-732. Zbl0839.60102MR1301461

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.