A unified approach to constrained mechanical systems as implicit differential equations
F. Barone; R. Grassini; G. Mendella
Annales de l'I.H.P. Physique théorique (1999)
- Volume: 70, Issue: 6, page 515-546
- ISSN: 0246-0211
Access Full Article
topHow to cite
topBarone, F., Grassini, R., and Mendella, G.. "A unified approach to constrained mechanical systems as implicit differential equations." Annales de l'I.H.P. Physique théorique 70.6 (1999): 515-546. <http://eudml.org/doc/76829>.
@article{Barone1999,
author = {Barone, F., Grassini, R., Mendella, G.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {constrained mechanics; global time-independent Lagrangian dynamics; nonconservative forces; nonholonomic constraints; implicit differential equations; cotangent space; configuration space; 1-forms},
language = {eng},
number = {6},
pages = {515-546},
publisher = {Gauthier-Villars},
title = {A unified approach to constrained mechanical systems as implicit differential equations},
url = {http://eudml.org/doc/76829},
volume = {70},
year = {1999},
}
TY - JOUR
AU - Barone, F.
AU - Grassini, R.
AU - Mendella, G.
TI - A unified approach to constrained mechanical systems as implicit differential equations
JO - Annales de l'I.H.P. Physique théorique
PY - 1999
PB - Gauthier-Villars
VL - 70
IS - 6
SP - 515
EP - 546
LA - eng
KW - constrained mechanics; global time-independent Lagrangian dynamics; nonconservative forces; nonholonomic constraints; implicit differential equations; cotangent space; configuration space; 1-forms
UR - http://eudml.org/doc/76829
ER -
References
top- [1] V.I. Arnold, V.V. Kozlov and A.I. Neishtadt, Dynamical Systems III, Springer, New York, 1988. MR923953
- [2] F. Barone and R. Grassini, On the second-order Euler-Lagrange equation in implicit form, Ric. Mat.46 (1) (1997) 221-233. Zbl0948.70523MR1615750
- [3] F. Barone, R. Grassini and G. Mendella, A generalized Lagrange equation in implicit form for nonconservative mechanics, J. Phys. A: Math. Gen.30 (1997) 1575-1590. Zbl1001.37503MR1449998
- [4] J.F. Cariñena and M.F. Rañada, Lagrangian systems with constraints: a geometric approach to the method of Lagrange multipliers, J. Phys. A: Math. Gen.26 (1993) 1335-1351. Zbl0772.58016MR1212006
- [5] M. Crampin, Tangent bundle geometry for Lagrangian dynamics, J. Phys. A: Math. Gen.16 (1983) 3755-3772. Zbl0536.58004MR727054
- [6] P. Dazord, Mécanique Hamiltonienne en présence de contraintes, Ill. J. Math.38 (1994) 148-175. Zbl0790.58018MR1245839
- [7] M. De Léon and P.R. Rodrigues, Methods of Differential Geometry in Analytical Mechanics, North-Holland, Amsterdam, 1989. Zbl0687.53001MR1021489
- [8] M. De Léon and D.M. De Diego, On the geometry of non-holonomic Lagrangian systems, J. Math. Phys.37 (7) (1996) 3389-3414. Zbl0869.70008MR1401231
- [9] M. De Léon and D.M. De Diego, Mechanical systems with non-linear constraints, Preprint. Zbl0874.70012
- [10] C. Godbillon, Géométrie Differentielle et Mécanique Analytique, Hermann, Paris, 1969. Zbl0174.24602MR242081
- [11] M.J. Gotay and J. Nester, Presymplectic Lagrangian systems I: The constraint algorithm and the equivalence theorem, Ann. Inst. Henri Poincaré30 (2) (1979) 129-142. Zbl0414.58015MR535369
- [12] M.J. Gotay and J. Nester, Presymplectic Lagrangian systems II: The second-order equation problem, Ann. Inst. Henri Poincaré32 (1) (1980) 1-13. Zbl0453.58016MR574809
- [13] X. Grácia and J.M. Pons, Constrained systems: A unified geometric approach, Int. J. Th. Phys.30 (4) (1991) 511-516. Zbl0733.58014MR1102803
- [14] X. Grácia and J.M. Pons, A generalized geometric framework for constrained systems, Diff. Geom. Appl.2 (1992) 223-247. Zbl0763.34001MR1245325
- [15] C.M. Marle, Reduction of constrained mechanical systems and stability of relative equilibria, Comm. Math. Phys.74 (1995) 295-318. Zbl0859.70012MR1362167
- [16] G. Marmo, G. Mendella and W.M. Tulczyjew, Symmetries and constants of the motion for dynamics in implicit form, Ann. Inst. H. Poincaré57 (2) (1992) 147-166. Zbl0766.58020MR1184887
- [17] G. Marmo, G. Mendella and W.M. Tulczyjew, Constrained Hamiltonian systems as implicit differential equations, J. Phys. A: Math. Gen.30 (1997) 277- 293. Zbl0922.58025MR1447117
- [18] W.M. Tulczyjew, Geometric Formulations of Physical Theories, Bibliopolis, Napoli, 1989. Zbl0707.58001MR1026453
- [19] A.M. Vershik and L.D. Fadeev, Differential geometry and Lagrangian mechanics with constraints, Soviet Physics-Doklady17 (1) (1972) 34-36. Zbl0243.70014
- [20] A.M. Vershik and L.D. Fadeev, Lagrangian mechanics in invariant form, Sel. Math. Sov.1 (1975) 339-350. Zbl0518.58015
- [21] E.T. Whittaker, A Treatise on the Analitical Dynamics of Particles and Rigid Bodies, Cambridge University Press, 1927. MR992404JFM53.0732.02
- [22] N. Woodhouse, Geometric Quantization, Clarendon Press, Oxford, 1980. Zbl0458.58003MR605306
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.