Symmetries and constants of the motion for dynamics in implicit form

G. Marmo; G. Mendella; W. M. Tulczyjew

Annales de l'I.H.P. Physique théorique (1992)

  • Volume: 57, Issue: 2, page 147-166
  • ISSN: 0246-0211

How to cite

top

Marmo, G., Mendella, G., and Tulczyjew, W. M.. "Symmetries and constants of the motion for dynamics in implicit form." Annales de l'I.H.P. Physique théorique 57.2 (1992): 147-166. <http://eudml.org/doc/76582>.

@article{Marmo1992,
author = {Marmo, G., Mendella, G., Tulczyjew, W. M.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {symmetries; singular Lagrangian; implicit differential equations; conservation laws; generalized Hamilton systems},
language = {eng},
number = {2},
pages = {147-166},
publisher = {Gauthier-Villars},
title = {Symmetries and constants of the motion for dynamics in implicit form},
url = {http://eudml.org/doc/76582},
volume = {57},
year = {1992},
}

TY - JOUR
AU - Marmo, G.
AU - Mendella, G.
AU - Tulczyjew, W. M.
TI - Symmetries and constants of the motion for dynamics in implicit form
JO - Annales de l'I.H.P. Physique théorique
PY - 1992
PB - Gauthier-Villars
VL - 57
IS - 2
SP - 147
EP - 166
LA - eng
KW - symmetries; singular Lagrangian; implicit differential equations; conservation laws; generalized Hamilton systems
UR - http://eudml.org/doc/76582
ER -

References

top
  1. [1] R. Abraham and J.E. Marsden, Foundations of Mechanics, Benjamin, Mass. 1978. Zbl0393.70001MR515141
  2. [2] J.L. Anderson and P.G. Bergmann, Constraints in Covariant Field Theories, Phys. Rev., Vol. 83, 1951, pp.1018-1026. Zbl0045.45505MR44382
  3. [3] V.I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations, Springer-Verlag, XI, New York, Heidelberg, Berlin, 1983. Zbl0507.34003MR695786
  4. [4] V.I. Arnold, A. Varchenko and S. Goussein-Zadé Eds., Singularités des applications differentiables, I, Editions Mir, Moscou, 1986. 
  5. [5] V.I. Arnold Ed., Dynamical Systems, III, Springer-Verlag, New York, Heidelberg, Berlin, 1988. MR1292465
  6. [6] D.V. Asonov and V.I. Arnold Eds., Dynamical Systems, I, Springer-Verlag, New York, Heidelberg, Berlin, 1987. Zbl0658.00008MR970793
  7. [7] P.G. Bergmann and J. Goldberg, Dirac Bracket Transformations in Phase Space, Phys. Rev., Vol. 98, 1955, pp.531-538. Zbl0065.22803MR74314
  8. [8] F. Cantrijn, M. Crampin, W. Sarlet and D. Saunders, The Canonical Isomorphism Between TkT*M and T*TkM, C. R. Acad. Sci. Paris, T. 309, Serie II, 1989, pp.1509- 1514. Zbl0702.58006MR1033091
  9. [9] Y. Choquet-Bruhat, C. de Witt-Morette and M. Dillard-Bleick, Analysis, Manifolds and Physics, North-Holland, Amsterdam, Oxford, New York, Tokio, 1982. Zbl0492.58001MR678940
  10. [10] M. Crampin, Tangent Bundle Geometry for Lagrangian Dynamics, J. Phys. A: Math. Gen., Vol. 16, 1983, pp. 3755-3772. Zbl0536.58004MR727054
  11. [11] M. Crampin, F. Cantrijn and W. Sarlet, Lifting Geometric Objects to a Cotangent Bundle, and the Geometry of the Cotangent Bundle of a Tangent Bundle, J. Geom. Phys., Vol. 4, 1987, pp.469-492. Zbl0699.53042MR986419
  12. [12] P.A.M. Dirac, Generalized Hamiltonian Dynamics, Can. J. Math., Vol. 2, 1950, pp.129-148. Zbl0036.14104MR43724
  13. [13] P.A.M. Dirac, Lectures in Quantum Mechanics, Belfer Graduate School of Science, Yeshiva University, New York, 1967. 
  14. [14] A. Frölicher and A. Nijenhuis, Theory of vector valued differential forms, Nederl. Akad. Wetensch. Proc., Vol. A 59, 1956, pp.338-359. Zbl0079.37502MR82554
  15. [15] J. Klein, On Lie Algebras of Vector Fields defined by Vector Forms, Colloquia Mathematica Societatis Janos Bolyai, 46, Topics in Differential Geometry, Debrecen, Hungary, 1984. Zbl0646.58002
  16. [16] P. Libermann and C.M. Marle, Symplectic Geometry and Analytical Mechanics, Reidel D, Dordrecht, 1987. Zbl0643.53002MR882548
  17. [17] L. Lusanna, An Enlarged Phase Space for Finite-dimensional Constrained Systems, Unifying Their Lagrangian, Phase- and Velocity-space Descriptions, Physics Reports, Vol. 185, 1990, pp.1-54. MR1034469
  18. [18] G. Marmo, E.J. Saletan, A. Simoni and B. Vitale, Dynamical Systems. A Differential Geometric Approach to Symmetry and Reduction, Wiley, New York, 1985. Zbl0592.58031MR818988
  19. [19] M.R. Menzio and W.M. Tulczyjew, Infinitesimal Symplectic Relations and Generalized Hamiltonian Dynamics, Ann. Inst. H. Poincaré, Vol. A28, 1978, pp.349-367. Zbl0405.58029MR511066
  20. [20] G. Morandi, C. Ferrario, G. Lo Vecchio, G. Marmo and C. Rubano, The Inverse Problem in the Calculus of Variations and the Geometry of the Tangent Bundle, Phys. Rep., Vol. 188, 1990, pp.147-284. Zbl1211.58008MR1050526
  21. [21] G. Pidello and W.M. Tulczyjew, Derivations of differential forms on Jet Bundles, Ann. Matem. Pura e Applic., Vol. 147, 1987, pp.249-265. Zbl0642.58004MR916711
  22. [22] E.C.G. Sudarshan and N. Mukunda, Classical Dynamics: A Modern Perspective, Wiley, New York, 1974. Zbl0329.70001MR434047
  23. [23] W.M. Tulczyjew, Hamiltonian Systems, Lagrangian Systems and the Legendre Transformation, Symp. Math., Vol. 16, 1974, pp.247-258. Zbl0304.58015MR388451
  24. [24] W.M. Tulczyjew, Sur la différentielle de Lagrange, C. R. Acad. Sci. Paris, T. 280, 1975, pp.1295-1298. Zbl0314.58018MR377987
  25. [25] W.M. Tulczyjew, The Lagrange Differential, Bull. Acad. Pol. des Sciences, Vol. 24, 1976, pp.1089-1096. Zbl0352.58002MR650306
  26. [26] W.M. Tulczyjew, Le sous-varietes Lagrangiennes et la dynamique Hamiltonienne, C. R. Acad. Sci. Paris, T. 283, 1976, p. 15. Zbl0327.58007MR420714
  27. [27] W.M. Tulczyjew, Le sous-varietes Lagrangiennes et la dynamique Lagrangienne, C. R. Acad. Sci. Paris, T. 283, 1976, pp. 675-678. Zbl0334.58008MR420715
  28. [28] W.M. Tulczyjew, The Legendre Transformation, Ann. Int. H. Poincaré, Vol. 27, 1977, pp. 101-114. Zbl0365.58011MR494271
  29. [29] W.M. Tulczyjew, A Symplectic Formulation of Relativistic Particle Dynamics, Acta Phys. Pol., Vol. B8, 1977, pp.431-447. MR445547
  30. [30] W.M. Tulczyjew, Geometrical Formulations of Physical Theories, Bibliopolis, Napoli, 1989. Zbl0707.58001MR1026453
  31. [31] A. Weinstein, Lectures on Symplectic Manifolds, American Math. Soc., Providence, R.I., 1977. Zbl0406.53031MR464312
  32. [32] K. Yano and S. Ishihara, Tangent and Cotangent Bundles, Dekker, New York, 1973. Zbl0262.53024MR350650

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.