New representations of the Poincaré group describing two interacting bosons

E. Frochaux

Annales de l'I.H.P. Physique théorique (1999)

  • Volume: 71, Issue: 2, page 217-239
  • ISSN: 0246-0211

How to cite

top

Frochaux, E.. "New representations of the Poincaré group describing two interacting bosons." Annales de l'I.H.P. Physique théorique 71.2 (1999): 217-239. <http://eudml.org/doc/76835>.

@article{Frochaux1999,
author = {Frochaux, E.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Schrödinger picture in momentum space; Lorentz invariant measure; Hamiltonian; free Lorentz generators; Poincaré algebra commutation rules; relativistic Schrödinger equation; bound state; scattering matrix},
language = {eng},
number = {2},
pages = {217-239},
publisher = {Gauthier-Villars},
title = {New representations of the Poincaré group describing two interacting bosons},
url = {http://eudml.org/doc/76835},
volume = {71},
year = {1999},
}

TY - JOUR
AU - Frochaux, E.
TI - New representations of the Poincaré group describing two interacting bosons
JO - Annales de l'I.H.P. Physique théorique
PY - 1999
PB - Gauthier-Villars
VL - 71
IS - 2
SP - 217
EP - 239
LA - eng
KW - Schrödinger picture in momentum space; Lorentz invariant measure; Hamiltonian; free Lorentz generators; Poincaré algebra commutation rules; relativistic Schrödinger equation; bound state; scattering matrix
UR - http://eudml.org/doc/76835
ER -

References

top
  1. [1] P.A.M. Dirac, Forms of relativistic dynamics, Rev. Mod. Phys.21 (1949) 392- 399. Zbl0035.26803MR33248
  2. [2] D.G. Currie, Interaction contra classical relativistic Hamiltonian particle mechanics, J. Math. Phys.4 (1963); See also E.C.G. Sudarshan and N. Mukunda, Classical Dynamics: A Modern Perspective, Wiley, New York, 1974. Zbl0125.19505MR158737
  3. [3] E. Frochaux, Non-trivial representations of the special relativity group, Forum Math.9 (1997) 75-102. Zbl0863.22005MR1426455
  4. [4] E. Frochaux, Two relativistic boson models in the Schrödinger picture in three space-time dimensions, J. Math. Phys.37 (1996) 2979-3000. Zbl0861.22015MR1390248
  5. [5] E. Frochaux, A relativistic quantum equation for N ≽ 2 bosons in two space-time dimensions, Helv. Phys. Acta68 (1995) 47-63. Zbl0840.35114MR1335349
  6. [6] E. Frochaux and A. Roessl, A relativistic generalization of Quantum Mechanics in two space-time dimensions, in preparation. 
  7. [7] E. Nelson, Analytic vectors, Ann. Math.70 (1959) 572-615. Zbl0091.10704MR107176
  8. [8] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. II, Fourier Analysis and Self-Adjointness, Academic Press, New York, 1975. Zbl0308.47002
  9. [9] J. Sucher, Relativistic invariance and the square-root Klein-Gordon equation, J Math. Phys.4 (1963) 17-23. Zbl0115.44403MR144638
  10. [10] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. III, Scattering Theory, Academic Press, Boston, 1979. Zbl0405.47007MR529429
  11. [11] D.R. Yafaev, Mathematical Scattering Theory, General Theory, Translations of Mathematical Monographs, Amer. Math. Soc., Providence, RI, 1992. Zbl0761.47001MR1180965
  12. [12] N. Dunford and J.T. Schwartz, Linear Operators: Part II: Spectral Theory, Wiley Classical Library, Interscience, 1988. Zbl0635.47002MR1009163
  13. [13] E.P. Wigner, Unitary representations of the inhomogeneous Lorentz group, Ann. Math.40 (1939) 149-204. Zbl0020.29601MR1503456JFM65.1129.01

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.