On charged fields with group symmetry and degeneracies of Verlinde's matrix S*
Annales de l'I.H.P. Physique théorique (1999)
- Volume: 71, Issue: 4, page 359-394
- ISSN: 0246-0211
Access Full Article
topHow to cite
topMüger, Michael. "On charged fields with group symmetry and degeneracies of Verlinde's matrix S*." Annales de l'I.H.P. Physique théorique 71.4 (1999): 359-394. <http://eudml.org/doc/76839>.
@article{Müger1999,
author = {Müger, Michael},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {algebraic quantum field theory; superselection structure; net of local observables; compact group; affiliated field net; localized representations; Doplicher-Haag-Roberts sectors; Buchholz-Fredenhagen locality assumption},
language = {eng},
number = {4},
pages = {359-394},
publisher = {Gauthier-Villars},
title = {On charged fields with group symmetry and degeneracies of Verlinde's matrix S*},
url = {http://eudml.org/doc/76839},
volume = {71},
year = {1999},
}
TY - JOUR
AU - Müger, Michael
TI - On charged fields with group symmetry and degeneracies of Verlinde's matrix S*
JO - Annales de l'I.H.P. Physique théorique
PY - 1999
PB - Gauthier-Villars
VL - 71
IS - 4
SP - 359
EP - 394
LA - eng
KW - algebraic quantum field theory; superselection structure; net of local observables; compact group; affiliated field net; localized representations; Doplicher-Haag-Roberts sectors; Buchholz-Fredenhagen locality assumption
UR - http://eudml.org/doc/76839
ER -
References
top- [1] C. D'Antoni and R. Longo, Interpolation by type I factors and the flip automorphism, J. Funct. Anal.51 (1983) 361-371. Zbl0535.46036MR703083
- [2] C. D'Antoni, Technical properties of the quasilocal algebra, in: D. Kastler, ed., The Algebraic Theory of Superselection Sectors. Introduction and Recent Results, World Scientific, 1990.
- [3] J. Böckenhauer and D.E. Evans, Modular invariants, graphs and α-induction for nets of subfactors I, Commun. Math. Phys.197 (1998) 361-386. Zbl0924.46047MR1652746
- [4] R. Brunetti, D. Guido and R. Longo, Modular structure and duality in QFT, Commun. Math. Phys.156 (1993) 201-219. Zbl0809.46086MR1234110
- [5] D. Buchholz, G. Mack and I. Todorov, The current algebra on the circle as a germ of local field theories, Nucl. Phys. B (Proc. Suppl.)5B (1988) 20-56. Zbl0958.22500MR1002955
- [6] D. Buchholz, S. Doplicher and R. Longo, On Noether's theorem in quantum field theory, Ann. Phys.170 (1986) 1-17. Zbl0609.46037MR848392
- [7] D. Buchholz, S. Doplicher, R. Longo and J. Roberts, Extensions of automorphisms and gauge symmetries, Commun. Math. Phys.155 (1993) 123- 134. Zbl0792.46052MR1228529
- [8] R. Conti, unpublished.
- [9] R. Dijkgraaf, C. Vafa, E. Verlinde and H. Verlinde, The operator algebra of orbifold models, Commun. Math. Phys.123 (1989) 485-527. Zbl0674.46051MR1003430
- [10] S. Doplicher, R. Haag and J.E. Roberts, Fields, observables and gauge transformations I, Commun. Math. Phys.13 (1969) 1-23. Zbl0175.24704MR258394
- [11] S. Doplicher, R. Haag and J.E. Roberts, Fields, observables and gauge transformations II, Commun. Math. Phys.15 (1969) 173-200. Zbl0186.58205MR260294
- [12] S. Doplicher, R. Haag and J.E. Roberts, Local observables and particle statistics I, Commun. Math. Phys.23 (1971) 199-230. MR297259
- [13] S. Doplicher and J.E. Roberts, Fields, statistics and non-abelian gauge groups, Commun. Math. Phys.28 (1972) 331-348. MR325053
- [14] S. Doplicher, R. Haag and J.E. Roberts, Local observables and particle statistics II, Commun. Math. Phys.35 (1974) 49-85. MR334742
- [15] S. Doplicher, Local aspects of superselection rules, Commun. Math. Phys.85 (1982) 73-86. Zbl0515.46065MR667768
- [16] S. Doplicher and R. Longo, Standard and split inclusions of von Neumann algebras, Invent. Math.75 (1984) 493-536. Zbl0539.46043MR735338
- [17] S. Doplicher and J.E. Roberts, A remark on compact automorphism groups of C*-algebras, J. Funct. Anal.66 (1986) 67-72. Zbl0589.46052MR829377
- [18] S. Doplicher and J.E. Roberts, Duals of compact Lie groups realized in the Cuntz algebras and their actions on C*-algebras, J. Funct. Anal.74 (1987) 96- 120. Zbl0619.46053MR901232
- [19] S. Doplicher and J.E. Roberts, Compact group actions on C*-algebras, J. Oper. Theor.19 (1988) 283-305. Zbl0689.46020MR960981
- [20] S. Doplicher and J.E. Roberts, Endomorphisms of C*-algebras, cross products and duality for compact groups, Ann. Math.130 (1989) 75-119. Zbl0702.46044MR1005608
- [21] S. Doplicher and J.E. Roberts, A new duality theory for compact groups, Invent. Math.98 (1989) 157-218. Zbl0691.22002MR1010160
- [22] S. Doplicher and J.E. Roberts, Why there is a field algebra with a compact gauge group describing the superselection structure in particle physics, Commun. Math. Phys.131 (1990) 51-107. Zbl0734.46042MR1062748
- [23] K. Fredenhagen, K.-H. Rehren and B. Schroer, Superselection sectors with braid group statistics and exchange algebras I, General theory, Commun. Math. Phys.125 (1989) 201-226. Zbl0682.46051MR1016869
- [24] K. Fredenhagen, K.-H. Rehren and B. Schroer, Superselection sectors with braid group statistics and exchange algebras II. Geometric aspects and conformal covariance, Rev. Math. Phys. (Special Issue) (1992) 113-157. Zbl0774.46041MR1199171
- [25] J. Fuchs, A.N. Schellekens and C. Schweigert, A matrix S for all simple current extensions, Nucl. Phys. B473 (1996) 323-366. Zbl0921.17014MR1409292
- [26] F. Gabbiani and J. Fröhlich, Operator algebras and conformal field theory, Commun. Math. Phys.155 (1993) 569-640. Zbl0801.46084MR1231644
- [27] D. Guido and R. Longo, The conformal spin-statistics theorem, Commun. Math. Phys.181 (1996) 11-35. Zbl0858.46053MR1410566
- [28] R. Haag, Local Quantum Physics, 2nd Ed., Springer, 1996. Zbl0857.46057MR1405610
- [29] E. Hewitt and K.A. Ross, Abstract Harmonic Analysis I, 2nd Ed., Springer, 1979. Zbl0416.43001MR551496
- [30] D. Kastler (ed.), The Algebraic Theory of Superselection Sectors. Introduction and Recent Results, World Scientific, 1990. MR1147460
- [31] R. Longo, Simple injective subfactors, Adv. Math.63 (1987) 152-171. Zbl0616.46054MR872351
- [32] R. Longo, Index of subfactors and statistics of quantum fields I, Commun. Math. Phys.126 (1989) 217-247. Zbl0682.46045MR1027496
- [33] R. Longo and K.-H. Rehren, Nets of subfactors, Rev. Math. Phys.7 (1995) 567- 597. Zbl0836.46055MR1332979
- [34] R. Longo and J.E. Roberts, A theory of dimension, K-Theory11 (1997) 103- 159. Zbl0874.18005MR1444286
- [35] M. Lüscher and G. Mack, Global conformal invariance in QFT, Commun. Math. Phys.41 (1975) 203-234. MR371282
- [36] M. Müger, Quantum double actions on operator algebras and orbifold quantum field theories, Commun. Math. Phys.191 (1998) 137-181. Zbl0897.46059MR1603762
- [37] M. Müger, Superselection structure of massive quantum field theories in 1 + 1 dimensions, Rev. Math. Phys.10 (1998) 1147-1170. Zbl0918.46070MR1670186
- [38] M. Müger, On the algebraic structure of rational conformal theories, in preparation.
- [39] K.-H. Rehren, Braid group statistics and their superselection rules, in: D. Kastler, ed., The Algebraic Theory of Superselection Sectors. Introduction and Recent Results, World Scientific, 1990. MR1147467
- [40] K.-H. Rehren, Markov traces as characters for local algebras, Nucl. Phys. B (Proc. Suppl.)18B (1990) 259-268. Zbl0957.81526MR1128146
- [41] J.E. Roberts, Cross products of von Neumann algebras by group duals, Sympos. Math.20 (1976) 335-363. Zbl0441.46053MR473859
- [42] J.E. Roberts, Local cohomology and superselection structure, Commun. Math. Phys.51 (1976) 107-119. Zbl0334.53033MR471753
- [43] J.E. Roberts, Net cohomology and its applications to field theory, in: L. Streit, ed., Quantum Fields, Particles, Processes, Springer, 1980. Zbl0484.57024MR601815
- [44] J.E. Roberts, Lectures on algebraic quantum field theory, in: D. Kastler, ed., The Algebraic Theory of Superselection Sectors. Introduction and Recent Results, World Scientific, 1990. MR1147460
- [45] A.N. Schellekens and S. Yankielowicz, Simple currents, modular invariants, and fixed points, Int. J. Mod. Phys. A5 (1990) 2903-2952. Zbl0706.17012MR1067813
- [46] S.J. Summers, Normal product states for Fermions and twisted duality for CCR- and CAR-type algebras with application to the Yukawa2 quantum field model, Commun. Math. Phys.86 (1982) 111-141. Zbl0505.46051MR678005
- [47] E. Verlinde, Fusion rules and modular transformations in 2D conformal field theory, Nucl. Phys. B300 (1988) 360-376. Zbl1180.81120MR954762
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.