On charged fields with group symmetry and degeneracies of Verlinde's matrix S*

Michael Müger

Annales de l'I.H.P. Physique théorique (1999)

  • Volume: 71, Issue: 4, page 359-394
  • ISSN: 0246-0211

How to cite

top

Müger, Michael. "On charged fields with group symmetry and degeneracies of Verlinde's matrix S*." Annales de l'I.H.P. Physique théorique 71.4 (1999): 359-394. <http://eudml.org/doc/76839>.

@article{Müger1999,
author = {Müger, Michael},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {algebraic quantum field theory; superselection structure; net of local observables; compact group; affiliated field net; localized representations; Doplicher-Haag-Roberts sectors; Buchholz-Fredenhagen locality assumption},
language = {eng},
number = {4},
pages = {359-394},
publisher = {Gauthier-Villars},
title = {On charged fields with group symmetry and degeneracies of Verlinde's matrix S*},
url = {http://eudml.org/doc/76839},
volume = {71},
year = {1999},
}

TY - JOUR
AU - Müger, Michael
TI - On charged fields with group symmetry and degeneracies of Verlinde's matrix S*
JO - Annales de l'I.H.P. Physique théorique
PY - 1999
PB - Gauthier-Villars
VL - 71
IS - 4
SP - 359
EP - 394
LA - eng
KW - algebraic quantum field theory; superselection structure; net of local observables; compact group; affiliated field net; localized representations; Doplicher-Haag-Roberts sectors; Buchholz-Fredenhagen locality assumption
UR - http://eudml.org/doc/76839
ER -

References

top
  1. [1] C. D'Antoni and R. Longo, Interpolation by type I factors and the flip automorphism, J. Funct. Anal.51 (1983) 361-371. Zbl0535.46036MR703083
  2. [2] C. D'Antoni, Technical properties of the quasilocal algebra, in: D. Kastler, ed., The Algebraic Theory of Superselection Sectors. Introduction and Recent Results, World Scientific, 1990. 
  3. [3] J. Böckenhauer and D.E. Evans, Modular invariants, graphs and α-induction for nets of subfactors I, Commun. Math. Phys.197 (1998) 361-386. Zbl0924.46047MR1652746
  4. [4] R. Brunetti, D. Guido and R. Longo, Modular structure and duality in QFT, Commun. Math. Phys.156 (1993) 201-219. Zbl0809.46086MR1234110
  5. [5] D. Buchholz, G. Mack and I. Todorov, The current algebra on the circle as a germ of local field theories, Nucl. Phys. B (Proc. Suppl.)5B (1988) 20-56. Zbl0958.22500MR1002955
  6. [6] D. Buchholz, S. Doplicher and R. Longo, On Noether's theorem in quantum field theory, Ann. Phys.170 (1986) 1-17. Zbl0609.46037MR848392
  7. [7] D. Buchholz, S. Doplicher, R. Longo and J. Roberts, Extensions of automorphisms and gauge symmetries, Commun. Math. Phys.155 (1993) 123- 134. Zbl0792.46052MR1228529
  8. [8] R. Conti, unpublished. 
  9. [9] R. Dijkgraaf, C. Vafa, E. Verlinde and H. Verlinde, The operator algebra of orbifold models, Commun. Math. Phys.123 (1989) 485-527. Zbl0674.46051MR1003430
  10. [10] S. Doplicher, R. Haag and J.E. Roberts, Fields, observables and gauge transformations I, Commun. Math. Phys.13 (1969) 1-23. Zbl0175.24704MR258394
  11. [11] S. Doplicher, R. Haag and J.E. Roberts, Fields, observables and gauge transformations II, Commun. Math. Phys.15 (1969) 173-200. Zbl0186.58205MR260294
  12. [12] S. Doplicher, R. Haag and J.E. Roberts, Local observables and particle statistics I, Commun. Math. Phys.23 (1971) 199-230. MR297259
  13. [13] S. Doplicher and J.E. Roberts, Fields, statistics and non-abelian gauge groups, Commun. Math. Phys.28 (1972) 331-348. MR325053
  14. [14] S. Doplicher, R. Haag and J.E. Roberts, Local observables and particle statistics II, Commun. Math. Phys.35 (1974) 49-85. MR334742
  15. [15] S. Doplicher, Local aspects of superselection rules, Commun. Math. Phys.85 (1982) 73-86. Zbl0515.46065MR667768
  16. [16] S. Doplicher and R. Longo, Standard and split inclusions of von Neumann algebras, Invent. Math.75 (1984) 493-536. Zbl0539.46043MR735338
  17. [17] S. Doplicher and J.E. Roberts, A remark on compact automorphism groups of C*-algebras, J. Funct. Anal.66 (1986) 67-72. Zbl0589.46052MR829377
  18. [18] S. Doplicher and J.E. Roberts, Duals of compact Lie groups realized in the Cuntz algebras and their actions on C*-algebras, J. Funct. Anal.74 (1987) 96- 120. Zbl0619.46053MR901232
  19. [19] S. Doplicher and J.E. Roberts, Compact group actions on C*-algebras, J. Oper. Theor.19 (1988) 283-305. Zbl0689.46020MR960981
  20. [20] S. Doplicher and J.E. Roberts, Endomorphisms of C*-algebras, cross products and duality for compact groups, Ann. Math.130 (1989) 75-119. Zbl0702.46044MR1005608
  21. [21] S. Doplicher and J.E. Roberts, A new duality theory for compact groups, Invent. Math.98 (1989) 157-218. Zbl0691.22002MR1010160
  22. [22] S. Doplicher and J.E. Roberts, Why there is a field algebra with a compact gauge group describing the superselection structure in particle physics, Commun. Math. Phys.131 (1990) 51-107. Zbl0734.46042MR1062748
  23. [23] K. Fredenhagen, K.-H. Rehren and B. Schroer, Superselection sectors with braid group statistics and exchange algebras I, General theory, Commun. Math. Phys.125 (1989) 201-226. Zbl0682.46051MR1016869
  24. [24] K. Fredenhagen, K.-H. Rehren and B. Schroer, Superselection sectors with braid group statistics and exchange algebras II. Geometric aspects and conformal covariance, Rev. Math. Phys. (Special Issue) (1992) 113-157. Zbl0774.46041MR1199171
  25. [25] J. Fuchs, A.N. Schellekens and C. Schweigert, A matrix S for all simple current extensions, Nucl. Phys. B473 (1996) 323-366. Zbl0921.17014MR1409292
  26. [26] F. Gabbiani and J. Fröhlich, Operator algebras and conformal field theory, Commun. Math. Phys.155 (1993) 569-640. Zbl0801.46084MR1231644
  27. [27] D. Guido and R. Longo, The conformal spin-statistics theorem, Commun. Math. Phys.181 (1996) 11-35. Zbl0858.46053MR1410566
  28. [28] R. Haag, Local Quantum Physics, 2nd Ed., Springer, 1996. Zbl0857.46057MR1405610
  29. [29] E. Hewitt and K.A. Ross, Abstract Harmonic Analysis I, 2nd Ed., Springer, 1979. Zbl0416.43001MR551496
  30. [30] D. Kastler (ed.), The Algebraic Theory of Superselection Sectors. Introduction and Recent Results, World Scientific, 1990. MR1147460
  31. [31] R. Longo, Simple injective subfactors, Adv. Math.63 (1987) 152-171. Zbl0616.46054MR872351
  32. [32] R. Longo, Index of subfactors and statistics of quantum fields I, Commun. Math. Phys.126 (1989) 217-247. Zbl0682.46045MR1027496
  33. [33] R. Longo and K.-H. Rehren, Nets of subfactors, Rev. Math. Phys.7 (1995) 567- 597. Zbl0836.46055MR1332979
  34. [34] R. Longo and J.E. Roberts, A theory of dimension, K-Theory11 (1997) 103- 159. Zbl0874.18005MR1444286
  35. [35] M. Lüscher and G. Mack, Global conformal invariance in QFT, Commun. Math. Phys.41 (1975) 203-234. MR371282
  36. [36] M. Müger, Quantum double actions on operator algebras and orbifold quantum field theories, Commun. Math. Phys.191 (1998) 137-181. Zbl0897.46059MR1603762
  37. [37] M. Müger, Superselection structure of massive quantum field theories in 1 + 1 dimensions, Rev. Math. Phys.10 (1998) 1147-1170. Zbl0918.46070MR1670186
  38. [38] M. Müger, On the algebraic structure of rational conformal theories, in preparation. 
  39. [39] K.-H. Rehren, Braid group statistics and their superselection rules, in: D. Kastler, ed., The Algebraic Theory of Superselection Sectors. Introduction and Recent Results, World Scientific, 1990. MR1147467
  40. [40] K.-H. Rehren, Markov traces as characters for local algebras, Nucl. Phys. B (Proc. Suppl.)18B (1990) 259-268. Zbl0957.81526MR1128146
  41. [41] J.E. Roberts, Cross products of von Neumann algebras by group duals, Sympos. Math.20 (1976) 335-363. Zbl0441.46053MR473859
  42. [42] J.E. Roberts, Local cohomology and superselection structure, Commun. Math. Phys.51 (1976) 107-119. Zbl0334.53033MR471753
  43. [43] J.E. Roberts, Net cohomology and its applications to field theory, in: L. Streit, ed., Quantum Fields, Particles, Processes, Springer, 1980. Zbl0484.57024MR601815
  44. [44] J.E. Roberts, Lectures on algebraic quantum field theory, in: D. Kastler, ed., The Algebraic Theory of Superselection Sectors. Introduction and Recent Results, World Scientific, 1990. MR1147460
  45. [45] A.N. Schellekens and S. Yankielowicz, Simple currents, modular invariants, and fixed points, Int. J. Mod. Phys. A5 (1990) 2903-2952. Zbl0706.17012MR1067813
  46. [46] S.J. Summers, Normal product states for Fermions and twisted duality for CCR- and CAR-type algebras with application to the Yukawa2 quantum field model, Commun. Math. Phys.86 (1982) 111-141. Zbl0505.46051MR678005
  47. [47] E. Verlinde, Fusion rules and modular transformations in 2D conformal field theory, Nucl. Phys. B300 (1988) 360-376. Zbl1180.81120MR954762

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.