An ergodic theorem for a class of spin systems

David Griffeath

Annales de l'I.H.P. Probabilités et statistiques (1977)

  • Volume: 13, Issue: 2, page 141-157
  • ISSN: 0246-0203

How to cite

top

Griffeath, David. "An ergodic theorem for a class of spin systems." Annales de l'I.H.P. Probabilités et statistiques 13.2 (1977): 141-157. <http://eudml.org/doc/77059>.

@article{Griffeath1977,
author = {Griffeath, David},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
language = {eng},
number = {2},
pages = {141-157},
publisher = {Gauthier-Villars},
title = {An ergodic theorem for a class of spin systems},
url = {http://eudml.org/doc/77059},
volume = {13},
year = {1977},
}

TY - JOUR
AU - Griffeath, David
TI - An ergodic theorem for a class of spin systems
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1977
PB - Gauthier-Villars
VL - 13
IS - 2
SP - 141
EP - 157
LA - eng
UR - http://eudml.org/doc/77059
ER -

References

top
  1. [1] L. Gray, D. Griffeath, On the uniqueness of certain interacting particle systems. Z. Wahr. verw. Geb., t. 35, 1976, p. 75-86. Zbl0316.60067MR405643
  2. [2] T.E. Harris, On a class of set-valued Markov processes. Ann. Probab., t. 4, 1976, p. 175-194. Zbl0357.60049MR400468
  3. [3] R. Holley, T. Liggett, Ergodic theorems for weakly interacting infinite systems and the voter model. Ann. Probab., t. 3, 1975, p. 643-663. Zbl0367.60115MR402985
  4. [4] R. Holley, D. Stroock, A martingale approach to infinite systems of interacting processes. Ann. Probab., t. 4, 1976, p. 195-228. Zbl0332.60072MR397927
  5. [5] R. Holley, D. Stroock, Dual processes and their application to infinite interacting systems. Adv. Math. To appear, 1976. Zbl0459.60097
  6. [6] R. Holley, D. Stroock, D. Williams, Applications of dual processes to diffusion theory. Proc. Symposia Pure Math. To appear, 1977. Zbl0382.60081MR443110
  7. [7] T.M. Liggett, Existence theorems for infinite particle systems. Trans. Amer. Math. Soc., t. 165, 1972, p. 471-481. Zbl0239.60072MR309218
  8. [8] N.S. Matloff, Equilibrium behavior in an infinite voting model. Ph. D. thesis, U.C.L.A., 1975. 
  9. [9] D. Schwartz, Ergodic theorems for an infinite particle system with sinks and sources. Ph. D. thesis, U. C. L. A., 1975. 
  10. [10] D. Schwartz, Applications of duality to a class of Markov processes. Ann. Probab. To appear, 1976. Zbl0367.60111MR448631
  11. [11] A.L. Toom, Nonergodic multidimensional systems of automata. Problemy Peredachi Informatsii, t. 10, no. 3, 1974, p. 229-246. Zbl0315.94053MR469584
  12. [12] L.N. Vasershtein, A.M. Leontovich, Invariant measures of certain Markov operators describing a homogeneous random medium. Problemy Peredachi Informatsii, t. 6, no. 1, 1970, p. 71-80. MR530400
  13. [13] N.B. Vasil'ev, M.B. Petrovskaya, I.I. Piatetskii-Shapiro, Modelling of voting with random error. Avtomatika i Telemekhanika, t. 10, 1969, p. 103-107. Zbl0205.17803
  14. [14] N.B. Vasil'ev, I.I. Piatetskii-Shapiro, On the classification of one-dimensional homogeneous networks. Problemy Peredachi Informatsii, t. 7, no. 4, 1971, p. 82-90. Zbl0306.94030MR309672

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.