Minimal moment conditions in the limit theory for general Markov branching processes

H. Hering

Annales de l'I.H.P. Probabilités et statistiques (1977)

  • Volume: 13, Issue: 4, page 299-319
  • ISSN: 0246-0203

How to cite

top

Hering, H.. "Minimal moment conditions in the limit theory for general Markov branching processes." Annales de l'I.H.P. Probabilités et statistiques 13.4 (1977): 299-319. <http://eudml.org/doc/77070>.

@article{Hering1977,
author = {Hering, H.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Indecomposable Branching Processes; Galton-Watson Processes; Branching Diffusions},
language = {eng},
number = {4},
pages = {299-319},
publisher = {Gauthier-Villars},
title = {Minimal moment conditions in the limit theory for general Markov branching processes},
url = {http://eudml.org/doc/77070},
volume = {13},
year = {1977},
}

TY - JOUR
AU - Hering, H.
TI - Minimal moment conditions in the limit theory for general Markov branching processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1977
PB - Gauthier-Villars
VL - 13
IS - 4
SP - 299
EP - 319
LA - eng
KW - Indecomposable Branching Processes; Galton-Watson Processes; Branching Diffusions
UR - http://eudml.org/doc/77070
ER -

References

top
  1. [0] M.G. Krein and M.A. Rutman, Linear operators leaving invariant a cone in a Banach space. Uspeki Matem. Nauk, t. 3, 1948, p. 1-95; Amer. Math. Soc. Translat., (1), t. 26, 1950. Zbl0030.12902MR38008
  2. [1] T.E. Harris, The Theory of Branching Processes. Springer-Verlag, Berlin-Göttingen- Heidelberg, 1963. Zbl0117.13002MR163361
  3. [2] A. Joffe and F. Spitzer, On multitype branching processes with ρ ≤ 1. J. Math. Anal. Appl., t. 19, 1967, p. 409-430. Zbl0178.19504MR212895
  4. [3] N. Ikeda, M. Nagasawa and S. Watanabe, Branching Markov processes I, II, III. J. Math. Kyoto Univ., t. 8, 1968, p. 233-278, 365-410; t. 9, 1969, p. 95-160. Zbl0233.60068MR232439
  5. [4] T. Savits, The explosion problem for branching Markov process. Osaka J. Math., t. 6, 1969, p. 375-395. Zbl0216.47104MR282426
  6. [5] K.B. Athreya, On the supercritical one dimensional age dependent branching processes. Ann. Math. Statist., t. 40, 1969, p. 743-763. Zbl0175.46603MR243628
  7. [6] H. Hering, Limit theorem for critical branching diffusion processes with absorbing barriers. Math. Biosci., t. 19, 1974, p. 355-370. Zbl0282.60053MR341641
  8. [7] S. Asmussen and H. Hering, Strong limit theorems for general supercritical branching processes with applications to branching diffusions. Z. Wahrscheinlichkeitsth. verw. Geb., t. 36, 1976, p. 195-212. Zbl0325.60081MR420889
  9. [8] S. Asmussen and H. Hering, Strong limit theorems for supercritical immigration branching processes. Math. Scand., t. 39, 1976, p. 327-342. Zbl0348.60117MR438498
  10. [9 a] H. Hering, Refined positivity theorem for semigroups generated by perturbed differential operators of second order with an application to Markov branching processes. Math. Proc. Cambr. Phil. Soc., t. 83, 1976. Zbl0374.47020MR467043
  11. [9 b] H. Hering, Uniform primitivity of semigroups generated by perturbed elliptic differential operators. Math. Proc. Cambr. Phil. Soc., t. 83, 1976. Zbl0374.47021MR467044
  12. [10] H. Hering, Subcritical branching diffusions. Compositio Math., t. 34, 1977, p. 289- 306. Zbl0368.60093MR438501
  13. [11] S. Asmussen and H. Hering, Some modified branching diffusion models. Math. Biosci., t. 34, 1977. Zbl0369.60103MR682242

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.