Critical branching diffusions : proper normalization and conditioned limit

H. Hering; F. M. Hoppe

Annales de l'I.H.P. Probabilités et statistiques (1981)

  • Volume: 17, Issue: 3, page 251-274
  • ISSN: 0246-0203

How to cite

top

Hering, H., and Hoppe, F. M.. "Critical branching diffusions : proper normalization and conditioned limit." Annales de l'I.H.P. Probabilités et statistiques 17.3 (1981): 251-274. <http://eudml.org/doc/77168>.

@article{Hering1981,
author = {Hering, H., Hoppe, F. M.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {regular variation; Markov branching processes; branching diffusion},
language = {eng},
number = {3},
pages = {251-274},
publisher = {Gauthier-Villars},
title = {Critical branching diffusions : proper normalization and conditioned limit},
url = {http://eudml.org/doc/77168},
volume = {17},
year = {1981},
}

TY - JOUR
AU - Hering, H.
AU - Hoppe, F. M.
TI - Critical branching diffusions : proper normalization and conditioned limit
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1981
PB - Gauthier-Villars
VL - 17
IS - 3
SP - 251
EP - 274
LA - eng
KW - regular variation; Markov branching processes; branching diffusion
UR - http://eudml.org/doc/77168
ER -

References

top
  1. [1] M.I. Goldstein and F.M. Hoppe, Critical multitype branching processes with infinite variance. J. Math. Anal. Appl., t. 65, p. 676-686. Zbl0408.60082MR510478
  2. [2] M.I. Goldstein and F.M. Hoppe, Necessary conditions for normed convergence of critical multitype Bienaymé-Galton-Watson processes without variance. J. Multivar. Anal., t. 8, 1978, p. 55-62. Zbl0382.60092MR483051
  3. [3] H. Hering, Uniform primitivity of semigroups generated by perturbed elliptic differential operators. Math. Proc. Camb. Phil. Soc., t. 83, 1978, p. 261-268. Zbl0374.47021MR467044
  4. [4] H. Hering, Minimal moment conditions in the limit theory for general Markov branching processes. Ann. Inst. Henri Poincaré, Sér. B, t. 13, 1978, p. 299-319. Zbl0391.60077MR488340
  5. [5] H. Hering, Multigroup branching diffusions. Advances in Probability, t. 5, 1978, p. 177-217. Zbl0408.60084MR517535
  6. [6] N. Ikeda, M. Nagasawa and S. Watanabe, Branching Markov processes I, II, III, J. Math. Kyoto Univ., t. 8, 1968, p. 233-278, p. 365-410; t. 9, 1969, p. 95-160. Zbl0233.60068MR232439
  7. [7] E.E. Kohlbecker, Weak asymptotic properties of partitions. Trans. Amer. Math. Soc., t. 88, 1958, p. 346-365. Zbl0173.04203MR95808
  8. [8] J. Lamperti, An occupation time theorem for a class of stochastic processes, Trans. Amer. Math. Soc., t. 88, 1958, p. 380-387. Zbl0228.60046MR94863
  9. [9] H. Rubin and D. Vere-Jones, Domain of attraction for the subcritical Galton-Watson branching process. J. Appl. Prob., t. 5, 1968, p. 216-219. Zbl0181.20601MR228074
  10. [10] T. Savits, The explosion problem for branching Markov process. Osaka J. Math., t. 6, 1969, p. 375-395. Zbl0216.47104MR282426
  11. [11] E. Seneta, Regularly Varying Functions. SpringerLecture Notes in Mathematics, New York, 1976, p. 508. Zbl0324.26002MR453936
  12. [12] R.S. Slack, A branching process with mean one and possibly infinite variance. Z. Wahrsch., t. 9, 1968, p. 139-145. Zbl0164.47002MR228077
  13. [13] R.S. Slack, Further notes on branching processes with mean one. Z. Wahrsch., t. 25, 1972, p. 31-38. Zbl0236.60056MR331539
  14. [14] V.A. Vatutin, A limit theorem for a critical Bellman-Harris branching process with several types of particles and infinite second moments. Theor. Probability Appl., t. 23, 1978, p. 776-778. Zbl0422.60062MR516277
  15. [15] V.M. Zolotarev, More exact statements of several theorems in the theory of branching processes. Theor. Probability Appl., t. 2, 1957, p. 245-253. Zbl0089.34202MR96321

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.