Critical branching diffusions : proper normalization and conditioned limit
Annales de l'I.H.P. Probabilités et statistiques (1981)
- Volume: 17, Issue: 3, page 251-274
- ISSN: 0246-0203
Access Full Article
topHow to cite
topHering, H., and Hoppe, F. M.. "Critical branching diffusions : proper normalization and conditioned limit." Annales de l'I.H.P. Probabilités et statistiques 17.3 (1981): 251-274. <http://eudml.org/doc/77168>.
@article{Hering1981,
author = {Hering, H., Hoppe, F. M.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {regular variation; Markov branching processes; branching diffusion},
language = {eng},
number = {3},
pages = {251-274},
publisher = {Gauthier-Villars},
title = {Critical branching diffusions : proper normalization and conditioned limit},
url = {http://eudml.org/doc/77168},
volume = {17},
year = {1981},
}
TY - JOUR
AU - Hering, H.
AU - Hoppe, F. M.
TI - Critical branching diffusions : proper normalization and conditioned limit
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1981
PB - Gauthier-Villars
VL - 17
IS - 3
SP - 251
EP - 274
LA - eng
KW - regular variation; Markov branching processes; branching diffusion
UR - http://eudml.org/doc/77168
ER -
References
top- [1] M.I. Goldstein and F.M. Hoppe, Critical multitype branching processes with infinite variance. J. Math. Anal. Appl., t. 65, p. 676-686. Zbl0408.60082MR510478
- [2] M.I. Goldstein and F.M. Hoppe, Necessary conditions for normed convergence of critical multitype Bienaymé-Galton-Watson processes without variance. J. Multivar. Anal., t. 8, 1978, p. 55-62. Zbl0382.60092MR483051
- [3] H. Hering, Uniform primitivity of semigroups generated by perturbed elliptic differential operators. Math. Proc. Camb. Phil. Soc., t. 83, 1978, p. 261-268. Zbl0374.47021MR467044
- [4] H. Hering, Minimal moment conditions in the limit theory for general Markov branching processes. Ann. Inst. Henri Poincaré, Sér. B, t. 13, 1978, p. 299-319. Zbl0391.60077MR488340
- [5] H. Hering, Multigroup branching diffusions. Advances in Probability, t. 5, 1978, p. 177-217. Zbl0408.60084MR517535
- [6] N. Ikeda, M. Nagasawa and S. Watanabe, Branching Markov processes I, II, III, J. Math. Kyoto Univ., t. 8, 1968, p. 233-278, p. 365-410; t. 9, 1969, p. 95-160. Zbl0233.60068MR232439
- [7] E.E. Kohlbecker, Weak asymptotic properties of partitions. Trans. Amer. Math. Soc., t. 88, 1958, p. 346-365. Zbl0173.04203MR95808
- [8] J. Lamperti, An occupation time theorem for a class of stochastic processes, Trans. Amer. Math. Soc., t. 88, 1958, p. 380-387. Zbl0228.60046MR94863
- [9] H. Rubin and D. Vere-Jones, Domain of attraction for the subcritical Galton-Watson branching process. J. Appl. Prob., t. 5, 1968, p. 216-219. Zbl0181.20601MR228074
- [10] T. Savits, The explosion problem for branching Markov process. Osaka J. Math., t. 6, 1969, p. 375-395. Zbl0216.47104MR282426
- [11] E. Seneta, Regularly Varying Functions. SpringerLecture Notes in Mathematics, New York, 1976, p. 508. Zbl0324.26002MR453936
- [12] R.S. Slack, A branching process with mean one and possibly infinite variance. Z. Wahrsch., t. 9, 1968, p. 139-145. Zbl0164.47002MR228077
- [13] R.S. Slack, Further notes on branching processes with mean one. Z. Wahrsch., t. 25, 1972, p. 31-38. Zbl0236.60056MR331539
- [14] V.A. Vatutin, A limit theorem for a critical Bellman-Harris branching process with several types of particles and infinite second moments. Theor. Probability Appl., t. 23, 1978, p. 776-778. Zbl0422.60062MR516277
- [15] V.M. Zolotarev, More exact statements of several theorems in the theory of branching processes. Theor. Probability Appl., t. 2, 1957, p. 245-253. Zbl0089.34202MR96321
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.