A new version of Doeblin's theorem

Nguyen Van Thu

Annales de l'I.H.P. Probabilités et statistiques (1981)

  • Volume: 17, Issue: 2, page 213-217
  • ISSN: 0246-0203

How to cite

top

Van Thu, Nguyen. "A new version of Doeblin's theorem." Annales de l'I.H.P. Probabilités et statistiques 17.2 (1981): 213-217. <http://eudml.org/doc/77165>.

@article{VanThu1981,
author = {Van Thu, Nguyen},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Doeblin's theorem; infinitely divisible; domain of partial attraction},
language = {eng},
number = {2},
pages = {213-217},
publisher = {Gauthier-Villars},
title = {A new version of Doeblin's theorem},
url = {http://eudml.org/doc/77165},
volume = {17},
year = {1981},
}

TY - JOUR
AU - Van Thu, Nguyen
TI - A new version of Doeblin's theorem
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1981
PB - Gauthier-Villars
VL - 17
IS - 2
SP - 213
EP - 217
LA - eng
KW - Doeblin's theorem; infinitely divisible; domain of partial attraction
UR - http://eudml.org/doc/77165
ER -

References

top
  1. [1] J. Barańska, Domain of partial attraction for infinitely divisible distributions in a Hilbert space. Colloq. Math., t. XXVIII, 1973, p. 317-322. Zbl0244.60001MR350799
  2. [2] W. Dœblin, Sur l'ensemble de puissances d'une loi de probabilité. Bull. Sci. Math., t. 6, 1939, p. 71-96. Zbl0063.01128MR5541JFM66.0610.02
  3. [3] E. Dettweiler, Grenzwentsätze für Wahrscheinlichkeitsmasse auf Badrikianschen Räumen. Z. Wahrscheinlichkeitstheory verw. Gebiete, t. 34, 1976, p. 285-311. Zbl0309.60010MR402849
  4. [4] E. Giné, A survey on the general central limit problem in Banach spaces. Séminaire sur la géométrie des espaces de Banach, 1977-1978. École Polytechnique. Zbl0405.60007MR520221
  5. [5] Ho Dang Phuc, Universal distribution for infinitely divisible distributions in a Banach space (Prepint). Graduate work at the Wroclaw University, 1978. 
  6. [6] K. Ito and M. Nisio, On the convergence of sums of independent Banach space valued random variables. Osaka J. of Math., t. 5, 1968, p. 35-48. Zbl0177.45102MR235593
  7. [7] N.S. Jain and G. Kallianpur, Norm convergent expansion for Gaussian processes in Banach spaces. Proceed. Amer. Math. Soc., t. 25, 1970, p. 890-895. Zbl0209.48604MR266304
  8. [8] R.R. Parthasarathy, Probability measures on metric spaces, New York, London, 1967. Zbl0153.19101
  9. [9] A. Tortrat, Structure des lois indéfiniment divisible dans un espace vectoriel topologique (separe) X. Symposium on Probability methods in analysis. Lecture Notes in Math., p. 299-328. Zbl0153.19301MR226692

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.