A new version of Doeblin's theorem
Annales de l'I.H.P. Probabilités et statistiques (1981)
- Volume: 17, Issue: 2, page 213-217
- ISSN: 0246-0203
Access Full Article
topHow to cite
topVan Thu, Nguyen. "A new version of Doeblin's theorem." Annales de l'I.H.P. Probabilités et statistiques 17.2 (1981): 213-217. <http://eudml.org/doc/77165>.
@article{VanThu1981,
author = {Van Thu, Nguyen},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Doeblin's theorem; infinitely divisible; domain of partial attraction},
language = {eng},
number = {2},
pages = {213-217},
publisher = {Gauthier-Villars},
title = {A new version of Doeblin's theorem},
url = {http://eudml.org/doc/77165},
volume = {17},
year = {1981},
}
TY - JOUR
AU - Van Thu, Nguyen
TI - A new version of Doeblin's theorem
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1981
PB - Gauthier-Villars
VL - 17
IS - 2
SP - 213
EP - 217
LA - eng
KW - Doeblin's theorem; infinitely divisible; domain of partial attraction
UR - http://eudml.org/doc/77165
ER -
References
top- [1] J. Barańska, Domain of partial attraction for infinitely divisible distributions in a Hilbert space. Colloq. Math., t. XXVIII, 1973, p. 317-322. Zbl0244.60001MR350799
- [2] W. Dœblin, Sur l'ensemble de puissances d'une loi de probabilité. Bull. Sci. Math., t. 6, 1939, p. 71-96. Zbl0063.01128MR5541JFM66.0610.02
- [3] E. Dettweiler, Grenzwentsätze für Wahrscheinlichkeitsmasse auf Badrikianschen Räumen. Z. Wahrscheinlichkeitstheory verw. Gebiete, t. 34, 1976, p. 285-311. Zbl0309.60010MR402849
- [4] E. Giné, A survey on the general central limit problem in Banach spaces. Séminaire sur la géométrie des espaces de Banach, 1977-1978. École Polytechnique. Zbl0405.60007MR520221
- [5] Ho Dang Phuc, Universal distribution for infinitely divisible distributions in a Banach space (Prepint). Graduate work at the Wroclaw University, 1978.
- [6] K. Ito and M. Nisio, On the convergence of sums of independent Banach space valued random variables. Osaka J. of Math., t. 5, 1968, p. 35-48. Zbl0177.45102MR235593
- [7] N.S. Jain and G. Kallianpur, Norm convergent expansion for Gaussian processes in Banach spaces. Proceed. Amer. Math. Soc., t. 25, 1970, p. 890-895. Zbl0209.48604MR266304
- [8] R.R. Parthasarathy, Probability measures on metric spaces, New York, London, 1967. Zbl0153.19101
- [9] A. Tortrat, Structure des lois indéfiniment divisible dans un espace vectoriel topologique (separe) X. Symposium on Probability methods in analysis. Lecture Notes in Math., p. 299-328. Zbl0153.19301MR226692
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.