Demiconvergence of processes indexed by two indices

Annie Millet; Louis Sucheston

Annales de l'I.H.P. Probabilités et statistiques (1983)

  • Volume: 19, Issue: 2, page 175-187
  • ISSN: 0246-0203

How to cite

top

Millet, Annie, and Sucheston, Louis. "Demiconvergence of processes indexed by two indices." Annales de l'I.H.P. Probabilités et statistiques 19.2 (1983): 175-187. <http://eudml.org/doc/77207>.

@article{Millet1983,
author = {Millet, Annie, Sucheston, Louis},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {processes indexed by two indices; demiconvergence; amart},
language = {eng},
number = {2},
pages = {175-187},
publisher = {Gauthier-Villars},
title = {Demiconvergence of processes indexed by two indices},
url = {http://eudml.org/doc/77207},
volume = {19},
year = {1983},
}

TY - JOUR
AU - Millet, Annie
AU - Sucheston, Louis
TI - Demiconvergence of processes indexed by two indices
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1983
PB - Gauthier-Villars
VL - 19
IS - 2
SP - 175
EP - 187
LA - eng
KW - processes indexed by two indices; demiconvergence; amart
UR - http://eudml.org/doc/77207
ER -

References

top
  1. [1] K. Astbury, Amarts indexed by directed sets. Ann. Prob., t. 6, 1978, p. 267-278. Zbl0378.60017MR464394
  2. [2] D. Bakry, Sur la régularité des trajectoires des martingales à deux indices.Z. Wahrscheinlichkeitstheorie verw. Geb., t. 50, 1979, p. 149-157. Zbl0419.60051MR551608
  3. [3] R. Cairoli, Une inégalité pour martingales à indices multiples. Séminaire de Probabilité IV. Université de Strasbourg. Lecture Notes in Math., t. 124, p. 1-27. Berlin, Heidelberg, New York. Springer, 1970. Zbl0218.60045MR270424
  4. [4] R. Cairoli and J.B. Walsh, Stochastic integrals in the plane, Acta Math., t. 134, 1975, p. 111-183. Zbl0334.60026MR420845
  5. [5] G.A. Edgar and L. Sucheston, Démonstrations de lois des grands nombres par les sous-martingales descendantes. C. R. Acad. Sci. Paris, t. 292, Série I, 1981, p. 967-969. Zbl0471.60035MR631108
  6. [6] H. Heinich, Convergence de sous-martingales positives dans un Banach réticulé, C. R. Acad. Sci. Paris, t. 286, 1978, p. 279-280. Zbl0383.60046MR486301
  7. [7] A. Millet and L. Sucheston, Convergence of classes of amarts indexed by directed sets, Canadian J. Math., t. 32, 1980, p. 86-125. Zbl0448.60036MR559789
  8. [8] A. Millet and L. Sucheston, A characterization of Vitali Conditions in terms of maximal inequalities, Ann. Prob., t. 8, 1980, p. 339-349. Zbl0428.60053MR566598
  9. [9] A. Millet and L. Sucheston, On regularity of multiparameter amarts and martingales, Z. Wahrscheinlichkeitstheorie verw. Geb., t. 56, 1981, p. 21-45. Zbl0438.60042MR612158
  10. [10] P.A. Meyer, Théorie élémentaire des processus à deux indices. Lecture Notes Math., t. 863, 1981, p. 1-39. Springer-Verlag. Zbl0461.60072MR630303
  11. [11] J. Neveu, Discrete parameter martingales. Amsterdam, North Holland, 1975. Zbl0345.60026MR402915
  12. [12] H.H. Schaefer, Banach lattices and positive operators, Springer-Verlag, Berlin, 1975. Zbl0296.47023MR423039
  13. [13] R.T. Smythe, Strong laws of large numbers for r-dimensional arrays of random variables, Ann. Prob., t. 1, 1973, p. 164-170. Zbl0258.60026MR346881

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.