Local nondeterminism and local times of general stochastic processes

Simeon M. Berman

Annales de l'I.H.P. Probabilités et statistiques (1983)

  • Volume: 19, Issue: 2, page 189-207
  • ISSN: 0246-0203

How to cite

top

Berman, Simeon M.. "Local nondeterminism and local times of general stochastic processes." Annales de l'I.H.P. Probabilités et statistiques 19.2 (1983): 189-207. <http://eudml.org/doc/77208>.

@article{Berman1983,
author = {Berman, Simeon M.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {local nondeterminism; local time; level crossings; oscillation properties; level sets},
language = {eng},
number = {2},
pages = {189-207},
publisher = {Gauthier-Villars},
title = {Local nondeterminism and local times of general stochastic processes},
url = {http://eudml.org/doc/77208},
volume = {19},
year = {1983},
}

TY - JOUR
AU - Berman, Simeon M.
TI - Local nondeterminism and local times of general stochastic processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1983
PB - Gauthier-Villars
VL - 19
IS - 2
SP - 189
EP - 207
LA - eng
KW - local nondeterminism; local time; level crossings; oscillation properties; level sets
UR - http://eudml.org/doc/77208
ER -

References

top
  1. [1] R.J. Adler, The Geometry of Random Fields, John Wiley and Sons, New York, 1981. Zbl0478.60059MR611857
  2. [2] S.M. Berman, Local times and sample function properties of stationary Gaussian processes. Trans. Amer. Math. Soc., t. 137, 1969, p. 277-299. Zbl0184.40801MR239652
  3. [3] S.M. Berman, Gaussian processes with stationary increments: local times and sample function properties. Ann. Math. Statist., t. 41, 1970, p. 1260-1272. Zbl0204.50501MR272035
  4. [4] S.M. Berman, Gaussian sample functions: uniform dimension and Holder conditions nowhere. Nagoya Math., J., t. 46, 1972, p. 63-86. Zbl0246.60038MR307320
  5. [5] S.M. Berman, Local nondeterminism and local times of Gaussian processes. Indiana Univ. Math. J., t. 23, 1973, p. 69-94. Zbl0264.60024MR317397
  6. [6] S.M. Berman, Local times of stochastic processes with positive definite bivariate densities, Stochastic Processes Appl., t. 12, 1982, p. 1-26. Zbl0471.60082MR632390
  7. [7] S.M. Berman, Local times of stochastic processes which are subordinate to Gaussian processes. J. Multivariate Anal., t. 12, 1982, p. 317-334. Zbl0502.60061MR666009
  8. [8] A.S. Besicovitch, On existence of subsets of finite measure of sets of infinite measure. Indag. Math., t. 14, 1952, p. 339-344. Zbl0046.28202MR48540
  9. [9] J.M. Cuzick, Local nondeterminism and the zeros of Gaussian processes. Ann. Probability, t. 6, 1978, p. 72-84. Zbl0374.60051MR488252
  10. [10] B. Fristedt, Sample functions of stochastic processes with stationary independent increments. Advances in Probability, t. 3, 1973, p. 241-396. Zbl0309.60047MR400406
  11. [11] D. Geman and J. Horowitz, Occupation densities. Ann. Probability, t. 8, 1980, p. 1-67. Zbl0499.60081MR556414
  12. [12] J. Hawkes, On the comparison of measure functions. Math. Proc. Cambridge Phil. Soc., t. 78, 1975, p. 483-491. Zbl0326.28006MR382605
  13. [13] P. Levy, Sur certains processus stochastiques homogenes. Compositio Math., t. 7, 1939, p. 283-339. Zbl0022.05903MR919JFM65.1346.02
  14. [14] M.B. Marcus, Capacity of level sets of certain stochastic processes. Z. Wahrscheinlichkeitstheorie Verw. Gebiete, t. 34, 1976, p. 279-284. Zbl0368.60038MR420814
  15. [15] S. Orey, Gaussian sample functions and the Hausdorff dimension of level crossings.Z. Wahrscheinlichkeitstheorie Verw. Gebiete, t. 15, 1970, p. 249-256. Zbl0196.19402MR279882
  16. [16] E. Perkins, The exact Hausdorff measure of the level sets of Brownian motion. Z. Wahrscheinlichkeitstheorie Verw. Gebiete, t. 58, 1981, p. 373-388. Zbl0458.60076MR639146
  17. [17] L.D. Pitt, Local times for Gaussian vector fields, Indiana Univ. Math. J., t. 27, 1978, p. 309-330. Zbl0382.60055MR471055
  18. [18] S.J. Taylor, Sample path properties of processes with stationary independent increments. In Stochastic Analysis, John Wiley and Sons, New York, 1973. MR394893
  19. [19] S.J. Taylor and J.G. Wendel, The exact Hausdorff measure of the zero set of a stable process. Z. Wahrscheinlichkeitstheorie Venw. Gebiete, t. 6, 1966, p. 170-180. Zbl0178.52702MR210196
  20. [20] H.F. Trotter, A property of Brownian motion paths. Illinois J. Math., t. 2, 1958, p. 425-432. Zbl0117.35502MR96311

NotesEmbed ?

top

You must be logged in to post comments.