Local nondeterminism and local times of general stochastic processes

Simeon M. Berman

Annales de l'I.H.P. Probabilités et statistiques (1983)

  • Volume: 19, Issue: 2, page 189-207
  • ISSN: 0246-0203

How to cite

top

Berman, Simeon M.. "Local nondeterminism and local times of general stochastic processes." Annales de l'I.H.P. Probabilités et statistiques 19.2 (1983): 189-207. <http://eudml.org/doc/77208>.

@article{Berman1983,
author = {Berman, Simeon M.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {local nondeterminism; local time; level crossings; oscillation properties; level sets},
language = {eng},
number = {2},
pages = {189-207},
publisher = {Gauthier-Villars},
title = {Local nondeterminism and local times of general stochastic processes},
url = {http://eudml.org/doc/77208},
volume = {19},
year = {1983},
}

TY - JOUR
AU - Berman, Simeon M.
TI - Local nondeterminism and local times of general stochastic processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1983
PB - Gauthier-Villars
VL - 19
IS - 2
SP - 189
EP - 207
LA - eng
KW - local nondeterminism; local time; level crossings; oscillation properties; level sets
UR - http://eudml.org/doc/77208
ER -

References

top
  1. [1] R.J. Adler, The Geometry of Random Fields, John Wiley and Sons, New York, 1981. Zbl0478.60059MR611857
  2. [2] S.M. Berman, Local times and sample function properties of stationary Gaussian processes. Trans. Amer. Math. Soc., t. 137, 1969, p. 277-299. Zbl0184.40801MR239652
  3. [3] S.M. Berman, Gaussian processes with stationary increments: local times and sample function properties. Ann. Math. Statist., t. 41, 1970, p. 1260-1272. Zbl0204.50501MR272035
  4. [4] S.M. Berman, Gaussian sample functions: uniform dimension and Holder conditions nowhere. Nagoya Math., J., t. 46, 1972, p. 63-86. Zbl0246.60038MR307320
  5. [5] S.M. Berman, Local nondeterminism and local times of Gaussian processes. Indiana Univ. Math. J., t. 23, 1973, p. 69-94. Zbl0264.60024MR317397
  6. [6] S.M. Berman, Local times of stochastic processes with positive definite bivariate densities, Stochastic Processes Appl., t. 12, 1982, p. 1-26. Zbl0471.60082MR632390
  7. [7] S.M. Berman, Local times of stochastic processes which are subordinate to Gaussian processes. J. Multivariate Anal., t. 12, 1982, p. 317-334. Zbl0502.60061MR666009
  8. [8] A.S. Besicovitch, On existence of subsets of finite measure of sets of infinite measure. Indag. Math., t. 14, 1952, p. 339-344. Zbl0046.28202MR48540
  9. [9] J.M. Cuzick, Local nondeterminism and the zeros of Gaussian processes. Ann. Probability, t. 6, 1978, p. 72-84. Zbl0374.60051MR488252
  10. [10] B. Fristedt, Sample functions of stochastic processes with stationary independent increments. Advances in Probability, t. 3, 1973, p. 241-396. Zbl0309.60047MR400406
  11. [11] D. Geman and J. Horowitz, Occupation densities. Ann. Probability, t. 8, 1980, p. 1-67. Zbl0499.60081MR556414
  12. [12] J. Hawkes, On the comparison of measure functions. Math. Proc. Cambridge Phil. Soc., t. 78, 1975, p. 483-491. Zbl0326.28006MR382605
  13. [13] P. Levy, Sur certains processus stochastiques homogenes. Compositio Math., t. 7, 1939, p. 283-339. Zbl0022.05903MR919JFM65.1346.02
  14. [14] M.B. Marcus, Capacity of level sets of certain stochastic processes. Z. Wahrscheinlichkeitstheorie Verw. Gebiete, t. 34, 1976, p. 279-284. Zbl0368.60038MR420814
  15. [15] S. Orey, Gaussian sample functions and the Hausdorff dimension of level crossings.Z. Wahrscheinlichkeitstheorie Verw. Gebiete, t. 15, 1970, p. 249-256. Zbl0196.19402MR279882
  16. [16] E. Perkins, The exact Hausdorff measure of the level sets of Brownian motion. Z. Wahrscheinlichkeitstheorie Verw. Gebiete, t. 58, 1981, p. 373-388. Zbl0458.60076MR639146
  17. [17] L.D. Pitt, Local times for Gaussian vector fields, Indiana Univ. Math. J., t. 27, 1978, p. 309-330. Zbl0382.60055MR471055
  18. [18] S.J. Taylor, Sample path properties of processes with stationary independent increments. In Stochastic Analysis, John Wiley and Sons, New York, 1973. MR394893
  19. [19] S.J. Taylor and J.G. Wendel, The exact Hausdorff measure of the zero set of a stable process. Z. Wahrscheinlichkeitstheorie Venw. Gebiete, t. 6, 1966, p. 170-180. Zbl0178.52702MR210196
  20. [20] H.F. Trotter, A property of Brownian motion paths. Illinois J. Math., t. 2, 1958, p. 425-432. Zbl0117.35502MR96311

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.