Continuity at zero of semi-groups on L1 and differentiation of additive processes

R. Émilion

Annales de l'I.H.P. Probabilités et statistiques (1985)

  • Volume: 21, Issue: 4, page 305-312
  • ISSN: 0246-0203

How to cite

top

Émilion, R.. "Continuity at zero of semi-groups on L1 and differentiation of additive processes." Annales de l'I.H.P. Probabilités et statistiques 21.4 (1985): 305-312. <http://eudml.org/doc/77260>.

@article{Émilion1985,
author = {Émilion, R.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {additive process; differentiation of processes; local ergodic; theorem; measurable semigroup},
language = {eng},
number = {4},
pages = {305-312},
publisher = {Gauthier-Villars},
title = {Continuity at zero of semi-groups on L1 and differentiation of additive processes},
url = {http://eudml.org/doc/77260},
volume = {21},
year = {1985},
}

TY - JOUR
AU - Émilion, R.
TI - Continuity at zero of semi-groups on L1 and differentiation of additive processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1985
PB - Gauthier-Villars
VL - 21
IS - 4
SP - 305
EP - 312
LA - eng
KW - additive process; differentiation of processes; local ergodic; theorem; measurable semigroup
UR - http://eudml.org/doc/77260
ER -

References

top
  1. [1] M.A. Akcoglu, A pointwise ergodic theorem in Lp spaces. Canad. J. Math., t. 27, 1975, p. 1075–1082. Zbl0326.47005MR396901
  2. [2] M.A. Akcoglu, R.V. Chacon, Local ratio theorem. Canad. J. Math., t. 22, 1970, p. 545-552. Zbl0201.06603MR264031
  3. [3] M.A. Akcoglu, A. Del Junco, Differentiation of n-dimensional additive processes. Canad. J. Math., t. 3, Vol. XXXIII, 1981, p. 749-768. Zbl0477.47012MR627654
  4. [4] M.A. Akcoglu, U. Krengel, A differentiation theorem for additive processes. Math. Z., t. 163, 1978, p. 199-210. Zbl0379.60073MR512474
  5. [5] M.A. Akcoglu, U. Krengel, A differentiation theorem in Lp. Math. Z., t. 169, 1979, p. 31-40. Zbl0394.47021MR546991
  6. [6] R. Émilion, Un théorème ergodique local dans Lp(1 &lt; p &lt; ∞). Ann. Inst. H. Poincaré, Vol. XVII, n° 2, 1981, p. 181-184. Zbl0466.60038
  7. [7] D. Feyel, Sur une classe remarquable de processus abéliens. Math. Z. (to appear). 
  8. [8] U. Krengel, A local ergodic theorem. Inventiones Math., t. 6, 1968, p. 329-333. Zbl0165.37402MR241602
  9. [9] M. Lin, On local ergodic convergence of semi-groups and additive processes (to appear). Zbl0545.47016
  10. [10] R. Sato, On a local ergodic theorem. Studia Math., t. 58, 1978, p. 1-5. Zbl0344.47005MR422581
  11. [11] R. Sato, On local ergodic theorems for semi-groups. Studia Math. LXIII, 1979, p. 45-55. Zbl0391.47022MR508881
  12. [12] R.T. Terrell, Local ergodic theorems for n-parameter semi-groups of operators. Lecture Notes in Math., t. 160, 1970, p. 262-278. Springer-Verlag. Zbl0204.45406MR268357

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.