Equivalent-singular dichotomy for quasi-invariant ergodic measures
Annales de l'I.H.P. Probabilités et statistiques (1985)
- Volume: 21, Issue: 4, page 393-400
- ISSN: 0246-0203
Access Full Article
topHow to cite
topOkazaki, Yoshiaki. "Equivalent-singular dichotomy for quasi-invariant ergodic measures." Annales de l'I.H.P. Probabilités et statistiques 21.4 (1985): 393-400. <http://eudml.org/doc/77265>.
@article{Okazaki1985,
author = {Okazaki, Yoshiaki},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {locally convex vector spaces; Hájek-Feldman’s dichotomy; Fernique's dichotomy; symmetric stable distributions; equivalent-singular dichotomy},
language = {eng},
number = {4},
pages = {393-400},
publisher = {Gauthier-Villars},
title = {Equivalent-singular dichotomy for quasi-invariant ergodic measures},
url = {http://eudml.org/doc/77265},
volume = {21},
year = {1985},
}
TY - JOUR
AU - Okazaki, Yoshiaki
TI - Equivalent-singular dichotomy for quasi-invariant ergodic measures
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1985
PB - Gauthier-Villars
VL - 21
IS - 4
SP - 393
EP - 400
LA - eng
KW - locally convex vector spaces; Hájek-Feldman’s dichotomy; Fernique's dichotomy; symmetric stable distributions; equivalent-singular dichotomy
UR - http://eudml.org/doc/77265
ER -
References
top- [1] S.D. Chatterji and S. Ramaswamy, Mesures gaussiennes et mesures produits. Springer-Verlag, Lecture Notes in Math., t. 920, 1982, p. 570-580. Zbl0504.28017MR658715
- [2] J. Feldman, Equivalence and perpendicularity of Gaussian Processes. Pacific J. Math., t. 8, 1958, p. 699-708. Zbl0084.13001MR102760
- [3] X. Fernique, Comparaison de mesures gaussiennes et de mesures produits. Ann. Inst. H. Poincaré, t. 20, 1985, p. 165-175. Zbl0536.60047MR749622
- [4] J. Hajek, On a property of normal distributions of any stochastic processes. Selected translations in Math. Statis. Prob., t. 1, 1958-1961, p. 245-252. Zbl0112.09702MR116379
- [5] E. Hewitt and K.A. Ross, Abstract harmonic analysis. Die Grundlehren der Math. Wiss., t. 115, Springer-Verlag, 1963. Zbl0115.10603
- [6] K. Ito and M. Nisio, On the convergence of sums of independent random variables. Osaka J. Math., t. 5, 1968, p. 35-48. Zbl0177.45102MR235593
- [7] A. Janssen, A survey about zero-one laws for probability measures on linear spaces and locally compact groups. Springer-Verlag, Lecture Notes in Math., t. 1064, 1984, p. 551-563. Zbl0542.60036MR772429
- [8] S. Kakutani, On equivalence of infinite product measures. Ann. of Math., t. 49, 1948, p. 214-224. Zbl0030.02303MR23331
- [9] M. Kanter, Equivalence singularity dichotomies for a class of ergodic measures. Math. Proc. Camb. Phil. Soc., t. 81, 1977, p. 249-252. Zbl0383.60041MR436306
- [10] J. Von Neumann, Uber einen Satz von Herrn M. H. Stone. Ann. of Math., t. 33, 1932, p. 567-573. Zbl0005.16402MR1503076JFM58.0423.03
- [11] Ju A. Rozanov, Infinite-dimensional Gaussian distributions. Proc. Steklov Inst. Math., t. 108, 1968, A. M. S. (English translation). Zbl0245.60036MR298752
- [12] H. Sato and Y. Okazaki, Separabilities of a Gaussian Radon measure. Ann. Inst. H. Poincaré, t. 11, 1975, p. 287-298. Zbl0362.60015MR400323
- [13] A.V. Skorohod, Integration in Hilbert space. Ergebnisse der Math., t. 79, Springer-Verlag, 1974. Zbl0307.28010MR466482
- [14] A. Tortrat, Lois e(λ) dans les espaces vectoriels et lois stables. Z. Wahrscheinlichkeitstheorie verw., t. 37, 1976, p. 175-182. Zbl0335.60013MR428371
- [15] J. Zinn, Zero-one laws for non-Gaussian measures. Proc. of A. M. S., t. 44, 1974, p. 179-185. Zbl0309.60022MR345158
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.