Displaying similar documents to “Equivalent-singular dichotomy for quasi-invariant ergodic measures”

Finiteness of Ergodic Unitarily Invariant Measures on Spaces of Infinite Matrices

Alexander I. Bufetov (2014)

Annales de l’institut Fourier

Similarity:

The main result of this note, Theorem 1.3, is the following: a Borel measure on the space of infinite Hermitian matrices, that is invariant and ergodic under the action of the infinite unitary group and that admits well-defined projections onto the quotient space of “corners" of finite size, must be finite. A similar result, Theorem 1.1, is also established for unitarily invariant measures on the space of all infinite complex matrices. These results imply that the infinite Hua-Pickrell...

On uniqueness of G-measures and g-measures

Ai Fan (1996)

Studia Mathematica

Similarity:

We give a simple proof of the sufficiency of a log-lipschitzian condition for the uniqueness of G-measures and g-measures which were studied by G. Brown, A. H. Dooley and M. Keane. In the opposite direction, we show that the lipschitzian condition together with positivity is not sufficient. In the special case where the defining function depends only upon two coordinates, we find a necessary and sufficient condition. The special case of Riesz products is discussed and the Hausdorff dimension...