Processus de saut avec interaction selon les plus proches particules

M. Roussignol

Annales de l'I.H.P. Probabilités et statistiques (1986)

  • Volume: 22, Issue: 2, page 175-198
  • ISSN: 0246-0203

How to cite

top

Roussignol, M.. "Processus de saut avec interaction selon les plus proches particules." Annales de l'I.H.P. Probabilités et statistiques 22.2 (1986): 175-198. <http://eudml.org/doc/77275>.

@article{Roussignol1986,
author = {Roussignol, M.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {infinite particle systems; existence of reversible states; translation invariant stationary state},
language = {fre},
number = {2},
pages = {175-198},
publisher = {Gauthier-Villars},
title = {Processus de saut avec interaction selon les plus proches particules},
url = {http://eudml.org/doc/77275},
volume = {22},
year = {1986},
}

TY - JOUR
AU - Roussignol, M.
TI - Processus de saut avec interaction selon les plus proches particules
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1986
PB - Gauthier-Villars
VL - 22
IS - 2
SP - 175
EP - 198
LA - fre
KW - infinite particle systems; existence of reversible states; translation invariant stationary state
UR - http://eudml.org/doc/77275
ER -

References

top
  1. [1] E. Andjel, C. Cocozza-Thivent, M. Roussignol, Quelques compléments sur le processus des misanthropes et le processus « zero range ». Ann. Inst. H. Poincaré, t. 21, n° 4, 1985, p. 363-382. Zbl0581.60093MR823081
  2. [2] G. Choquet, J. Deny, Sur l'équation de convolution μ = μ*σ. C. R. A. S., t. 250, 1960, p. 799-801. Zbl0093.12802MR119041
  3. [3] C. Cocozza-Thivent, Processus des misanthropes. Z. f. W., t. 70, 1985, p. 509- 523. Zbl0554.60097MR807334
  4. [4] H.O. Georgii, Canonical Gibbs measures. Lecture Notes in Mathematics, n° 760. Zbl0409.60094
  5. [5] H.O. Georgii, Equilibria for particle motions; conditionnally balanced point random fields. G. Koch, F. Spizzichino (eds.). Exchangeability in probability and statistics. North Holland, Amsterdam, 1982. Zbl0495.60054MR675981
  6. [6] R.A. Holley, Free energy in a Markovian model of a lattice spin system. Comm. Math. Phys., t. 23, 1971, p. 87-99. Zbl0241.60096MR292449
  7. [7] R.A. Holley et D.W. Stroock, In one and two dimensions every stationary-measure for a stochastic Ising model is a Gibbs state. Comm. Math. Phys., t. 55, 1977, p. 37-45. MR451455
  8. [8] T.M. Liggett, The stochastic evolution of infinite systems for interacting particles. Lecture Notes in Mathematics, n° 598. Zbl0363.60109MR458647
  9. [9] T.M. Liggett, Interacting particle systems. Springer. Zbl0559.60078MR2108619
  10. [10] T.M. Liggett, Attractive nearest particle systems. Annals of probability, t. 11, 1983, n° 1, p. 16-33. Zbl0508.60081MR682797
  11. [11] F. Spitzer, Stochastic time evolution of one dimensional inimite particle system. B. A. M. S., t. 83, n° 5, 1977, p. 880-890. Zbl0372.60149MR448632

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.