Processus de saut avec interaction selon les plus proches particules
Annales de l'I.H.P. Probabilités et statistiques (1986)
- Volume: 22, Issue: 2, page 175-198
- ISSN: 0246-0203
Access Full Article
topHow to cite
topRoussignol, M.. "Processus de saut avec interaction selon les plus proches particules." Annales de l'I.H.P. Probabilités et statistiques 22.2 (1986): 175-198. <http://eudml.org/doc/77275>.
@article{Roussignol1986,
author = {Roussignol, M.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {infinite particle systems; existence of reversible states; translation invariant stationary state},
language = {fre},
number = {2},
pages = {175-198},
publisher = {Gauthier-Villars},
title = {Processus de saut avec interaction selon les plus proches particules},
url = {http://eudml.org/doc/77275},
volume = {22},
year = {1986},
}
TY - JOUR
AU - Roussignol, M.
TI - Processus de saut avec interaction selon les plus proches particules
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1986
PB - Gauthier-Villars
VL - 22
IS - 2
SP - 175
EP - 198
LA - fre
KW - infinite particle systems; existence of reversible states; translation invariant stationary state
UR - http://eudml.org/doc/77275
ER -
References
top- [1] E. Andjel, C. Cocozza-Thivent, M. Roussignol, Quelques compléments sur le processus des misanthropes et le processus « zero range ». Ann. Inst. H. Poincaré, t. 21, n° 4, 1985, p. 363-382. Zbl0581.60093MR823081
- [2] G. Choquet, J. Deny, Sur l'équation de convolution μ = μ*σ. C. R. A. S., t. 250, 1960, p. 799-801. Zbl0093.12802MR119041
- [3] C. Cocozza-Thivent, Processus des misanthropes. Z. f. W., t. 70, 1985, p. 509- 523. Zbl0554.60097MR807334
- [4] H.O. Georgii, Canonical Gibbs measures. Lecture Notes in Mathematics, n° 760. Zbl0409.60094
- [5] H.O. Georgii, Equilibria for particle motions; conditionnally balanced point random fields. G. Koch, F. Spizzichino (eds.). Exchangeability in probability and statistics. North Holland, Amsterdam, 1982. Zbl0495.60054MR675981
- [6] R.A. Holley, Free energy in a Markovian model of a lattice spin system. Comm. Math. Phys., t. 23, 1971, p. 87-99. Zbl0241.60096MR292449
- [7] R.A. Holley et D.W. Stroock, In one and two dimensions every stationary-measure for a stochastic Ising model is a Gibbs state. Comm. Math. Phys., t. 55, 1977, p. 37-45. MR451455
- [8] T.M. Liggett, The stochastic evolution of infinite systems for interacting particles. Lecture Notes in Mathematics, n° 598. Zbl0363.60109MR458647
- [9] T.M. Liggett, Interacting particle systems. Springer. Zbl0559.60078MR2108619
- [10] T.M. Liggett, Attractive nearest particle systems. Annals of probability, t. 11, 1983, n° 1, p. 16-33. Zbl0508.60081MR682797
- [11] F. Spitzer, Stochastic time evolution of one dimensional inimite particle system. B. A. M. S., t. 83, n° 5, 1977, p. 880-890. Zbl0372.60149MR448632
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.