Arbres et processus de Bellman-Harris

B. Chauvin

Annales de l'I.H.P. Probabilités et statistiques (1986)

  • Volume: 22, Issue: 2, page 209-232
  • ISSN: 0246-0203

How to cite

top

Chauvin, B.. "Arbres et processus de Bellman-Harris." Annales de l'I.H.P. Probabilités et statistiques 22.2 (1986): 209-232. <http://eudml.org/doc/77277>.

@article{Chauvin1986,
author = {Chauvin, B.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Galton-Watson processes; supercritical Bellman-Harris process; Markov semigroup; renewal theorem},
language = {fre},
number = {2},
pages = {209-232},
publisher = {Gauthier-Villars},
title = {Arbres et processus de Bellman-Harris},
url = {http://eudml.org/doc/77277},
volume = {22},
year = {1986},
}

TY - JOUR
AU - Chauvin, B.
TI - Arbres et processus de Bellman-Harris
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1986
PB - Gauthier-Villars
VL - 22
IS - 2
SP - 209
EP - 232
LA - fre
KW - Galton-Watson processes; supercritical Bellman-Harris process; Markov semigroup; renewal theorem
UR - http://eudml.org/doc/77277
ER -

References

top
  1. [1] S. Asmussen, Some martingale methods in the limit theory of supercritical branching processes. Advances in Prob. and related topics, t. 5 (branching processes). Ed. Joffe and Ney, 1978. Zbl0402.60083MR517529
  2. [2] K.B. Athreya and P. Ney, Branching processes. Berlin, Springer, 1972. Zbl0259.60002MR373040
  3. [3] J.D. Biggins, Chernoff's theorem in the branching random walk. Journal of Applied Probability, t. 14, 1977, p. 630-636. Zbl0373.60090MR464415
  4. [4] M.D. Bramson, Maximal displacement of branching brownian motion. Communications on Pure and Applied Mathematics, t. 31, 1978. Zbl0361.60052MR494541
  5. [5] W. Feller, An introduction to probability theory and its applications, t. 2, Wiley, 1971. Zbl0138.10207MR270403
  6. [6] T.E. Harris, The theory of branching processes. Springer, 1963. Zbl0117.13002MR163361
  7. [7] P. Jagers, Branching processes with biological applicationsWiley, 1975. Zbl0356.60039MR488341
  8. [8] P. Jagers and O. Nerman, The groath and composition of branching populations. Advances in Applied Probability, t. 16, 1984. Zbl0535.60075MR742953
  9. [9] A. Joffe, Remarks on the structure of trees with applications to supercritical Galton-Watson processes. Advances in Probability and related topics, t. 5 (branching processes). Ed. Joffe and Ney, 1978. Zbl0414.60078MR517537
  10. [10] A. Joffe, L. Le Cam and J. Neveu, Sur la loi des grands nombres pour des variables aléatoires de Bernoulli attachées à un arbre dyadique. C. R. Académie des Sciences de Paris, t. 277, 12 novembre 1973. Zbl0292.60078MR341570
  11. [11] H.P. Mckean, Application of Brownian motion to the equation of Kolmogorov-Petrovski-Piskunov. Communications on Pure and Applied Mathematics, t. 28, 1975. Zbl0316.35053MR400428
  12. [12] P.A. Meyer, Probability and potential. Blaisdell Publishing Company, 1966. Zbl0138.10401MR205288
  13. [13] P.A. Meyer, Martingales and stochastics integrals. I. Lectures Notes in Mathematics, t. 284, Springer, 1972. Zbl0239.60001
  14. [14] O. Nerman, On the convergence of supercritical general C. M. J. branching processes. Z. F. W. Geb., t. 57, 1981. Zbl0451.60078MR629532
  15. [15] O. Nerman, The groath and composition of supercritical branching populations on general type spaces. A paraître. 
  16. [16] J. Neveu, Martingales à temps discret, Masson, 1972. MR402914
  17. [17] J. Neveu, Arbres et processus de Galton-Watson. Annales de l'Inst. H. Poincaré, Vol. 22, n° 2, 1986. Zbl0601.60082MR850756

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.