Fluctuations des temps d'occupation d'un site dans l'exclusion simple symétrique

C. Kipnis

Annales de l'I.H.P. Probabilités et statistiques (1987)

  • Volume: 23, Issue: 1, page 21-35
  • ISSN: 0246-0203

How to cite

top

Kipnis, C.. "Fluctuations des temps d'occupation d'un site dans l'exclusion simple symétrique." Annales de l'I.H.P. Probabilités et statistiques 23.1 (1987): 21-35. <http://eudml.org/doc/77290>.

@article{Kipnis1987,
author = {Kipnis, C.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {infinite particle system; simple symmetric exclusion process; fluctuations of the occupation time; central limit theorem for martingales},
language = {fre},
number = {1},
pages = {21-35},
publisher = {Gauthier-Villars},
title = {Fluctuations des temps d'occupation d'un site dans l'exclusion simple symétrique},
url = {http://eudml.org/doc/77290},
volume = {23},
year = {1987},
}

TY - JOUR
AU - Kipnis, C.
TI - Fluctuations des temps d'occupation d'un site dans l'exclusion simple symétrique
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1987
PB - Gauthier-Villars
VL - 23
IS - 1
SP - 21
EP - 35
LA - fre
KW - infinite particle system; simple symmetric exclusion process; fluctuations of the occupation time; central limit theorem for martingales
UR - http://eudml.org/doc/77290
ER -

References

top
  1. [1] R. Arratia, Symmetric exclusions processes: a comparison inequality and a large deviation result. Annals of Prob., t. 13, 1985, p. 53-61. Zbl0558.60075MR770627
  2. [2] C. Cocozza, C. Kipnis, Existence de processus Markoviens pour des systèmes infinis de particules. Ann. I. H. P., t. 13, 1977, p. 239-258. Zbl0384.60079MR488376
  3. [3] W. Feller, An introduction to probability and its applications. Vol. 2 (2nd edition), J. Wiley and Sons, 1966, New York. Zbl0138.10207MR210154
  4. [4] M.I. Gordin, B.A. Lifsic, The central limit theorem for stationary Markov processes, Sov. Math. Dokl., t. 19, 1978, p. 392-394. Zbl0395.60057MR501277
  5. [5] C. Kipnis, S.R.S. Varadhan, Central limit theorem for additive functionals of reversible Markov processes, Comm. Math. Phys., t. 104, 1986, p. 1-19. Zbl0588.60058MR834478
  6. [6] T. Liggett, Infinite particle systems, Grundlehren der Math., n° 276, 1985, Springer-Verlag. Zbl0559.60078
  7. [7] S. Port, Equilibrium processes, Trans. Amer. Math. Soc., t. 124, 1966, p. 168-184. Zbl0143.19301MR198546
  8. [8] F. Spitzer, Principles of random walk, 1964, Van NostrandPrinceton. Zbl0119.34304MR171290
  9. [9] H. Van Beijeren, R. Kutner, H. Spohn, Excess noise for driven diffusive systems, Phys. Rev. Let., t. 54, 1985, p. 2026. MR789756

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.