Fluctuations des temps d'occupation d'un site dans l'exclusion simple symétrique
Annales de l'I.H.P. Probabilités et statistiques (1987)
- Volume: 23, Issue: 1, page 21-35
- ISSN: 0246-0203
Access Full Article
topHow to cite
topReferences
top- [1] R. Arratia, Symmetric exclusions processes: a comparison inequality and a large deviation result. Annals of Prob., t. 13, 1985, p. 53-61. Zbl0558.60075MR770627
- [2] C. Cocozza, C. Kipnis, Existence de processus Markoviens pour des systèmes infinis de particules. Ann. I. H. P., t. 13, 1977, p. 239-258. Zbl0384.60079MR488376
- [3] W. Feller, An introduction to probability and its applications. Vol. 2 (2nd edition), J. Wiley and Sons, 1966, New York. Zbl0138.10207MR210154
- [4] M.I. Gordin, B.A. Lifsic, The central limit theorem for stationary Markov processes, Sov. Math. Dokl., t. 19, 1978, p. 392-394. Zbl0395.60057MR501277
- [5] C. Kipnis, S.R.S. Varadhan, Central limit theorem for additive functionals of reversible Markov processes, Comm. Math. Phys., t. 104, 1986, p. 1-19. Zbl0588.60058MR834478
- [6] T. Liggett, Infinite particle systems, Grundlehren der Math., n° 276, 1985, Springer-Verlag. Zbl0559.60078
- [7] S. Port, Equilibrium processes, Trans. Amer. Math. Soc., t. 124, 1966, p. 168-184. Zbl0143.19301MR198546
- [8] F. Spitzer, Principles of random walk, 1964, Van NostrandPrinceton. Zbl0119.34304MR171290
- [9] H. Van Beijeren, R. Kutner, H. Spohn, Excess noise for driven diffusive systems, Phys. Rev. Let., t. 54, 1985, p. 2026. MR789756