Characterization of probability distributions by Poincaré-type inequalities

Louis H. Y. Chen

Annales de l'I.H.P. Probabilités et statistiques (1987)

  • Volume: 23, Issue: 1, page 91-110
  • ISSN: 0246-0203

How to cite

top

Chen, Louis H. Y.. "Characterization of probability distributions by Poincaré-type inequalities." Annales de l'I.H.P. Probabilités et statistiques 23.1 (1987): 91-110. <http://eudml.org/doc/77293>.

@article{Chen1987,
author = {Chen, Louis H. Y.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {characterization of the normal distribution; infinitely divisible distributions},
language = {eng},
number = {1},
pages = {91-110},
publisher = {Gauthier-Villars},
title = {Characterization of probability distributions by Poincaré-type inequalities},
url = {http://eudml.org/doc/77293},
volume = {23},
year = {1987},
}

TY - JOUR
AU - Chen, Louis H. Y.
TI - Characterization of probability distributions by Poincaré-type inequalities
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1987
PB - Gauthier-Villars
VL - 23
IS - 1
SP - 91
EP - 110
LA - eng
KW - characterization of the normal distribution; infinitely divisible distributions
UR - http://eudml.org/doc/77293
ER -

References

top
  1. [1] A.A. Borovkov and S.A. Utev, On an inequality and a related characterization of the normal distribution, Theory Prob. Appl., t. 28, 1984, p. 219-228. Zbl0533.60024
  2. [2] L.H.Y. Chen, An inequality for the multivariate normal distribution, J. Multivariate Anal., t. 12, 1982, p. 306-315. Zbl0483.60011MR661566
  3. [3] L.H.Y. Chen, Poincaré-type inequalities via stochastic integrals, Z. Wahrscheinlichkeitstheorie verw. Gebiete, t. 69, 1985, p. 251-277. Zbl0549.60019MR779459
  4. [4] H. Chernoff, A note on an inequality involving the normal distribution, Ann. Probab., t. 9, 1981, p. 533-535. Zbl0457.60014MR614640
  5. [5] M. Kac, Can one hear the shape of a drum? Amer. Math. Monthly, t. 73, 1966, p. 1-23. Zbl0139.05603MR201237
  6. [6] C. Stein, A bound for the error in the normal approximation to the distribution of a sum of dependent random variables, Proc. Sixth Berkeley Sympos. Math. Statist. Probab., t. 2, 1972, p. 583-602. Zbl0278.60026MR402873
  7. [7] H. Urakawa, Reflection groups and the eigenvalue problems of vibrating membranes with mixed boundary conditions, Tôhoku Math. Journ., t. 36, 1984, p. 175-183. Zbl0552.35014MR742592

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.