Optimal nonlinear transformations of random variables

Aldo Goia; Ernesto Salinelli

Annales de l'I.H.P. Probabilités et statistiques (2010)

  • Volume: 46, Issue: 3, page 653-676
  • ISSN: 0246-0203

Abstract

top
In this paper we deepen the study of the nonlinear principal components introduced by Salinelli in 1998, referring to a real random variable. New insights on their probabilistic and statistical meaning are given with some properties. An estimation procedure based on spline functions, adapting to a statistical framework the classical Rayleigh–Ritz method, is introduced. Asymptotic properties of the estimator are proved, providing an upper bound for the rate of convergence under suitable mild conditions. Some applications to the goodness-of-fit test and the construction of bivariate distributions are proposed.

How to cite

top

Goia, Aldo, and Salinelli, Ernesto. "Optimal nonlinear transformations of random variables." Annales de l'I.H.P. Probabilités et statistiques 46.3 (2010): 653-676. <http://eudml.org/doc/240675>.

@article{Goia2010,
abstract = {In this paper we deepen the study of the nonlinear principal components introduced by Salinelli in 1998, referring to a real random variable. New insights on their probabilistic and statistical meaning are given with some properties. An estimation procedure based on spline functions, adapting to a statistical framework the classical Rayleigh–Ritz method, is introduced. Asymptotic properties of the estimator are proved, providing an upper bound for the rate of convergence under suitable mild conditions. Some applications to the goodness-of-fit test and the construction of bivariate distributions are proposed.},
author = {Goia, Aldo, Salinelli, Ernesto},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {covariance operator; Chernoff–Poincaré inequality; nonlinear principal components; splines estimates; Sturm–Liouville problems; Chernoff-Poincaré inequality; spline estimates; Sturm-Liouville problems},
language = {eng},
number = {3},
pages = {653-676},
publisher = {Gauthier-Villars},
title = {Optimal nonlinear transformations of random variables},
url = {http://eudml.org/doc/240675},
volume = {46},
year = {2010},
}

TY - JOUR
AU - Goia, Aldo
AU - Salinelli, Ernesto
TI - Optimal nonlinear transformations of random variables
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2010
PB - Gauthier-Villars
VL - 46
IS - 3
SP - 653
EP - 676
AB - In this paper we deepen the study of the nonlinear principal components introduced by Salinelli in 1998, referring to a real random variable. New insights on their probabilistic and statistical meaning are given with some properties. An estimation procedure based on spline functions, adapting to a statistical framework the classical Rayleigh–Ritz method, is introduced. Asymptotic properties of the estimator are proved, providing an upper bound for the rate of convergence under suitable mild conditions. Some applications to the goodness-of-fit test and the construction of bivariate distributions are proposed.
LA - eng
KW - covariance operator; Chernoff–Poincaré inequality; nonlinear principal components; splines estimates; Sturm–Liouville problems; Chernoff-Poincaré inequality; spline estimates; Sturm-Liouville problems
UR - http://eudml.org/doc/240675
ER -

References

top
  1. [1] F. Antoci. Some necessary and some sufficient conditions for the compactness of the embedding of weighted Sobolev spaces. Ric. Mat. LII (2003) 55–71. Zbl1330.46029MR2091081
  2. [2] G. Arfken. Mathematical Methods for Physicists. Academic Press, New York, 1966. Zbl1239.00005MR205512
  3. [3] D. Bosq. Modelization, nonparametric estimation and prediction for continuous time process. In Nonparametric Functional Estimation and Related Topics 509–529. G. Roussas, (Ed.). Nato, Asi Series. Kluwer Academic, Dordrecht, 1991. Zbl0737.62032MR1154349
  4. [4] P. Burman. Rates of convergence for the estimate of the optimal transformations of variables. Ann. Statist. 19 (1991) 702–723. Zbl0733.62054MR1105840
  5. [5] P. Burman and K. W. Chen. Nonparametric estimation of a regression function. Ann. Statist. 17 (1989) 1567–1596. Zbl0744.62054MR1026300
  6. [6] G. Buttazzo, M. Giaquinta and S. Hildebrandt. One-Dimensional Variational Problems. Oxford Lecture Series in Mathematics and Its Applications 15. Clarendon Press, New York, 1998. Zbl0915.49001MR1694383
  7. [7] T. Cacoullos. On upper and lower-bounds for the variance of a function of a random variable. Ann. Probab. 10 (1982) 799–809. Zbl0492.60021MR659549
  8. [8] T. Cacoullos and V. Papathanasiou. On upper bounds for the variance of functions of random variables. Statist. Probab. Lett. 3 (1985) 175–184. Zbl0572.60021MR801687
  9. [9] T. Cacoullos and V. Papathanasiou. Characterizations of distributions by variance bounds. Statist. Probab. Lett. 7 (1989) 351–356. Zbl0677.62012MR1001133
  10. [10] T. Cacoullos and V. Papathanasiou. Characterization of distributions by generalizations of variance bounds and simple proofs of the CLT. J. Statist. Plann. Inference 63 (1997) 157–171. Zbl0922.62009MR1491576
  11. [11] H. Cardot. Spatially adaptive splines for statistical linear inverse problems. J. Multivariate Anal. 81 (2002) 100–119. Zbl1005.65053MR1901208
  12. [12] L. H. Y. Chen and J. H. Lou. Characterization of probability distributions by Poincaré-type inequalities. Ann. Inst. H. Poincaré Probab. Statist 23 (1987) 91–110. Zbl0612.60013MR877386
  13. [13] H. Chernoff. A note on an inequality involving the normal distribution. Ann. Probab. 9 (1981) 533–535. Zbl0457.60014MR614640
  14. [14] R. Courant and D. Hilbert. Methods of Mathematical Physics. Wiley, New York, 1989. Zbl0729.00007MR1013360
  15. [15] J. Dauxois, A. Pousse and Y. Romain. Asymptotic theory for the principal component analysis of a vector random function: Some applications to statistical inference. J. Multivariate Anal. 12 (1982) 136–154. Zbl0539.62064MR650934
  16. [16] C. De Boor. A Practical Guide to Splines. Springer, New York, 2001. Zbl0987.65015MR1900298
  17. [17] N. E. El Faouzi and P. Sarda. Rates of convergence for spline estimates of additive principal components. J. Multivariate Anal. 68 (1999) 120–137. Zbl0927.62061MR1668907
  18. [18] I. M. Gelfand and S. V. Fomin. Calculus of Variations. Prentice-Hall, New Jersey, 1963. Zbl0127.05402MR160139
  19. [19] P. Gurka and B. Opic. Continuous and compact imbeddings of weighted Sobolev Spaces II. Czechoslovak Math. J. 39 (1989) 78–94. Zbl0669.46019MR983485
  20. [20] C. A. J. Klaassen. On an inequality of Chernoff. Ann. Probab. 13 (1985) 966–974. Zbl0576.60015MR799431
  21. [21] A. Kufner and B. Opic. How to define reasonably weighted Sobolev Spaces. Comment. Math. Univ. Carolin. 25 (1984) 537–554. Zbl0557.46025MR775568
  22. [22] O. Johnson and A. Barron. Fisher information inequalities and the central limit theorem, Probab. Theory Related Fields 129 (2004) 391–409. Zbl1047.62005MR2128239
  23. [23] I. T. Jolliffe. Principal Component Analysis. Springer, Berlin, 2004. Zbl1011.62064MR841268
  24. [24] H. O. Lancaster. The Chi-Squared Distribution. Wiley, New York, 1969. Zbl0193.17802MR253452
  25. [25] M.-L. T. Lee. Properties and applications of the Samarov family of bivariate distributions. Comm. Statist. Theory Methods 25 (1996) 1207–1222. Zbl0875.62205MR1394279
  26. [26] D. D. Mari and S. Kotz. Correlation and Dependence. Imperial College Press, London, 2001. Zbl0977.62004MR1835042
  27. [27] M. Okamoto. Distinctness of the eigenvalues of a quadratic form in a multivariate sample. Ann. Statist. 1 (1973) 763–765. Zbl0261.62043MR331643
  28. [28] J. G. Pierce and R. S. Varga. Higher order convergence results for the Rayleigh–Ritz method applied to eigenvalue problems. I: Estimates relating Rayleigh–Ritz and Galerkin approximations to eigenfunctions. SIAM J. Numer. Anal. 9 (1972) 137–151. Zbl0301.65063MR395268
  29. [29] S. Purkayastha and S. K. Bhandari. Characterization of uniform distributions by inequality of Chernoff-type, Sankhyā 52 (1990) 376–382. Zbl0727.62021MR1178045
  30. [30] E. Salinelli. Nonlinear principal components I. Absolutely continuous random variables with positive bounded densities. Ann. Statist. 26 (1998) 596–616. Zbl0929.62067MR1626079
  31. [31] E. Salinelli. Nonlinear principal components II. Characterization of normal distributions. J. Multivariate Anal. 100 (2009) 652–660. Zbl1169.62058MR2478188
  32. [32] L. L. Schumaker. Spline Functions: Basic Theory. Wiley, New York, 1981. Zbl0449.41004MR606200
  33. [33] C. J. Stone. Optimal global rate of convergence for nonparametric regression. Ann. Statist. 10 (1982) 1040–1053. Zbl0511.62048MR673642
  34. [34] A. Zettl. Sturm–Liouville Theory. Mathematical Survey and Monographs 121. Amer. Math. Soc., Providence, RI, 2005. Zbl1103.34001MR2170950

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.