Optimal nonlinear transformations of random variables
Annales de l'I.H.P. Probabilités et statistiques (2010)
- Volume: 46, Issue: 3, page 653-676
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topGoia, Aldo, and Salinelli, Ernesto. "Optimal nonlinear transformations of random variables." Annales de l'I.H.P. Probabilités et statistiques 46.3 (2010): 653-676. <http://eudml.org/doc/240675>.
@article{Goia2010,
abstract = {In this paper we deepen the study of the nonlinear principal components introduced by Salinelli in 1998, referring to a real random variable. New insights on their probabilistic and statistical meaning are given with some properties. An estimation procedure based on spline functions, adapting to a statistical framework the classical Rayleigh–Ritz method, is introduced. Asymptotic properties of the estimator are proved, providing an upper bound for the rate of convergence under suitable mild conditions. Some applications to the goodness-of-fit test and the construction of bivariate distributions are proposed.},
author = {Goia, Aldo, Salinelli, Ernesto},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {covariance operator; Chernoff–Poincaré inequality; nonlinear principal components; splines estimates; Sturm–Liouville problems; Chernoff-Poincaré inequality; spline estimates; Sturm-Liouville problems},
language = {eng},
number = {3},
pages = {653-676},
publisher = {Gauthier-Villars},
title = {Optimal nonlinear transformations of random variables},
url = {http://eudml.org/doc/240675},
volume = {46},
year = {2010},
}
TY - JOUR
AU - Goia, Aldo
AU - Salinelli, Ernesto
TI - Optimal nonlinear transformations of random variables
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2010
PB - Gauthier-Villars
VL - 46
IS - 3
SP - 653
EP - 676
AB - In this paper we deepen the study of the nonlinear principal components introduced by Salinelli in 1998, referring to a real random variable. New insights on their probabilistic and statistical meaning are given with some properties. An estimation procedure based on spline functions, adapting to a statistical framework the classical Rayleigh–Ritz method, is introduced. Asymptotic properties of the estimator are proved, providing an upper bound for the rate of convergence under suitable mild conditions. Some applications to the goodness-of-fit test and the construction of bivariate distributions are proposed.
LA - eng
KW - covariance operator; Chernoff–Poincaré inequality; nonlinear principal components; splines estimates; Sturm–Liouville problems; Chernoff-Poincaré inequality; spline estimates; Sturm-Liouville problems
UR - http://eudml.org/doc/240675
ER -
References
top- [1] F. Antoci. Some necessary and some sufficient conditions for the compactness of the embedding of weighted Sobolev spaces. Ric. Mat. LII (2003) 55–71. Zbl1330.46029MR2091081
- [2] G. Arfken. Mathematical Methods for Physicists. Academic Press, New York, 1966. Zbl1239.00005MR205512
- [3] D. Bosq. Modelization, nonparametric estimation and prediction for continuous time process. In Nonparametric Functional Estimation and Related Topics 509–529. G. Roussas, (Ed.). Nato, Asi Series. Kluwer Academic, Dordrecht, 1991. Zbl0737.62032MR1154349
- [4] P. Burman. Rates of convergence for the estimate of the optimal transformations of variables. Ann. Statist. 19 (1991) 702–723. Zbl0733.62054MR1105840
- [5] P. Burman and K. W. Chen. Nonparametric estimation of a regression function. Ann. Statist. 17 (1989) 1567–1596. Zbl0744.62054MR1026300
- [6] G. Buttazzo, M. Giaquinta and S. Hildebrandt. One-Dimensional Variational Problems. Oxford Lecture Series in Mathematics and Its Applications 15. Clarendon Press, New York, 1998. Zbl0915.49001MR1694383
- [7] T. Cacoullos. On upper and lower-bounds for the variance of a function of a random variable. Ann. Probab. 10 (1982) 799–809. Zbl0492.60021MR659549
- [8] T. Cacoullos and V. Papathanasiou. On upper bounds for the variance of functions of random variables. Statist. Probab. Lett. 3 (1985) 175–184. Zbl0572.60021MR801687
- [9] T. Cacoullos and V. Papathanasiou. Characterizations of distributions by variance bounds. Statist. Probab. Lett. 7 (1989) 351–356. Zbl0677.62012MR1001133
- [10] T. Cacoullos and V. Papathanasiou. Characterization of distributions by generalizations of variance bounds and simple proofs of the CLT. J. Statist. Plann. Inference 63 (1997) 157–171. Zbl0922.62009MR1491576
- [11] H. Cardot. Spatially adaptive splines for statistical linear inverse problems. J. Multivariate Anal. 81 (2002) 100–119. Zbl1005.65053MR1901208
- [12] L. H. Y. Chen and J. H. Lou. Characterization of probability distributions by Poincaré-type inequalities. Ann. Inst. H. Poincaré Probab. Statist 23 (1987) 91–110. Zbl0612.60013MR877386
- [13] H. Chernoff. A note on an inequality involving the normal distribution. Ann. Probab. 9 (1981) 533–535. Zbl0457.60014MR614640
- [14] R. Courant and D. Hilbert. Methods of Mathematical Physics. Wiley, New York, 1989. Zbl0729.00007MR1013360
- [15] J. Dauxois, A. Pousse and Y. Romain. Asymptotic theory for the principal component analysis of a vector random function: Some applications to statistical inference. J. Multivariate Anal. 12 (1982) 136–154. Zbl0539.62064MR650934
- [16] C. De Boor. A Practical Guide to Splines. Springer, New York, 2001. Zbl0987.65015MR1900298
- [17] N. E. El Faouzi and P. Sarda. Rates of convergence for spline estimates of additive principal components. J. Multivariate Anal. 68 (1999) 120–137. Zbl0927.62061MR1668907
- [18] I. M. Gelfand and S. V. Fomin. Calculus of Variations. Prentice-Hall, New Jersey, 1963. Zbl0127.05402MR160139
- [19] P. Gurka and B. Opic. Continuous and compact imbeddings of weighted Sobolev Spaces II. Czechoslovak Math. J. 39 (1989) 78–94. Zbl0669.46019MR983485
- [20] C. A. J. Klaassen. On an inequality of Chernoff. Ann. Probab. 13 (1985) 966–974. Zbl0576.60015MR799431
- [21] A. Kufner and B. Opic. How to define reasonably weighted Sobolev Spaces. Comment. Math. Univ. Carolin. 25 (1984) 537–554. Zbl0557.46025MR775568
- [22] O. Johnson and A. Barron. Fisher information inequalities and the central limit theorem, Probab. Theory Related Fields 129 (2004) 391–409. Zbl1047.62005MR2128239
- [23] I. T. Jolliffe. Principal Component Analysis. Springer, Berlin, 2004. Zbl1011.62064MR841268
- [24] H. O. Lancaster. The Chi-Squared Distribution. Wiley, New York, 1969. Zbl0193.17802MR253452
- [25] M.-L. T. Lee. Properties and applications of the Samarov family of bivariate distributions. Comm. Statist. Theory Methods 25 (1996) 1207–1222. Zbl0875.62205MR1394279
- [26] D. D. Mari and S. Kotz. Correlation and Dependence. Imperial College Press, London, 2001. Zbl0977.62004MR1835042
- [27] M. Okamoto. Distinctness of the eigenvalues of a quadratic form in a multivariate sample. Ann. Statist. 1 (1973) 763–765. Zbl0261.62043MR331643
- [28] J. G. Pierce and R. S. Varga. Higher order convergence results for the Rayleigh–Ritz method applied to eigenvalue problems. I: Estimates relating Rayleigh–Ritz and Galerkin approximations to eigenfunctions. SIAM J. Numer. Anal. 9 (1972) 137–151. Zbl0301.65063MR395268
- [29] S. Purkayastha and S. K. Bhandari. Characterization of uniform distributions by inequality of Chernoff-type, Sankhyā 52 (1990) 376–382. Zbl0727.62021MR1178045
- [30] E. Salinelli. Nonlinear principal components I. Absolutely continuous random variables with positive bounded densities. Ann. Statist. 26 (1998) 596–616. Zbl0929.62067MR1626079
- [31] E. Salinelli. Nonlinear principal components II. Characterization of normal distributions. J. Multivariate Anal. 100 (2009) 652–660. Zbl1169.62058MR2478188
- [32] L. L. Schumaker. Spline Functions: Basic Theory. Wiley, New York, 1981. Zbl0449.41004MR606200
- [33] C. J. Stone. Optimal global rate of convergence for nonparametric regression. Ann. Statist. 10 (1982) 1040–1053. Zbl0511.62048MR673642
- [34] A. Zettl. Sturm–Liouville Theory. Mathematical Survey and Monographs 121. Amer. Math. Soc., Providence, RI, 2005. Zbl1103.34001MR2170950
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.