Quelques théorèmes ergodiques dans les espaces L E p

I. Assani

Annales de l'I.H.P. Probabilités et statistiques (1987)

  • Volume: 23, Issue: 2, page 209-224
  • ISSN: 0246-0203

How to cite

top

Assani, I.. "Quelques théorèmes ergodiques dans les espaces $L^p_E$." Annales de l'I.H.P. Probabilités et statistiques 23.2 (1987): 209-224. <http://eudml.org/doc/77298>.

@article{Assani1987,
author = {Assani, I.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Cesaro means; ergodic theorems},
language = {fre},
number = {2},
pages = {209-224},
publisher = {Gauthier-Villars},
title = {Quelques théorèmes ergodiques dans les espaces $L^p_E$},
url = {http://eudml.org/doc/77298},
volume = {23},
year = {1987},
}

TY - JOUR
AU - Assani, I.
TI - Quelques théorèmes ergodiques dans les espaces $L^p_E$
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1987
PB - Gauthier-Villars
VL - 23
IS - 2
SP - 209
EP - 224
LA - fre
KW - Cesaro means; ergodic theorems
UR - http://eudml.org/doc/77298
ER -

References

top
  1. [1] I. Assani, Contribution à la théorie ergodique des opérateurs et applications multivoques à valeurs dans un espace de Banach. Thèse d'État. Université Paris VI, 3 mars 1986. 
  2. [2] J. Bourgain, Extension of a result of Benedek, Calderon' and Panzone. Arkiv. Mat., t. 22, 1984, p. 91-95. Zbl0548.46022MR735880
  3. [3] M. Cambern, The Isometries of Lp(X, K). Pacific J. Math., t. 55, 1974, p. 9-17. Zbl0277.46027MR370172
  4. [4] R.V. Chacon, An ergodic theorem for operators satisfying norm conditions. J. Math. Mech., t. 11, 1962, p. 165-172. Zbl0115.33804MR147619
  5. [5] N. Dunford, J.T. Schwarz, Linear operators. Part 1, Interscience, New York, 1958. Zbl0084.10402
  6. [6] C.L. Fefferman, E.M. Stein, Some maximal inequalities. Amer J. Math., t. 1, 1971, p. 107-115. Zbl0222.26019MR284802
  7. [7] A. Ionescu-Tulcea, Ergodic properties of isometries in Lp spaces. Bull. Amer. Math. Soc., t. 70, 1964, p. 336-371. Zbl0185.29003MR206207
  8. [8] C.H. Kan, Ergodic properties of Lamperti operators. Canad. J. of Math., 1978, t. 30, 1978, p. 1206-1214. Zbl0368.47006MR511557
  9. [9] H.A. Klei, Compacité faible de parties décomposables de L1E. Comptes Rendus de l'Acad. des Sciences, Paris, t. 296, Série I, 1983, p. 965. Zbl0532.46017MR777586
  10. [10] H.P. Rosenthal, A characterization of Banach spaces containing l1. Proc. Nat. Acad. Sc. U. S. A., t. 71, 1974, p. 2411-2413. Zbl0297.46013MR358307
  11. [11] H.L. Royden, Real analysis, 2nd ed, MacMillan Co, New York, 1968. Zbl0197.03501MR1013117
  12. [12] M. Srebrny, Measurable selectors of PCA multifunctions with applications. Mem. Amer. Math. Soc., t. 52, n° 311, 1984. Zbl0567.28005MR764317
  13. [13] A.R. Sourour, The isometries of Lp (Ω, X). Journal of Functional Analysis, t. 30, 1978, p. 276-285. Zbl0396.47020MR515230
  14. [14] A. De La Torre, A simple proof of the maximal ergodic theorem. Can. J. Math., t. 28, 1976, p. 1073-1075. Zbl0336.47006MR417819

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.