Étude des extrêmes d'une suite stationnaire m-dépendante avec une application relative aux accroissements du processus de Wiener

George Haiman

Annales de l'I.H.P. Probabilités et statistiques (1987)

  • Volume: 23, Issue: 3, page 425-457
  • ISSN: 0246-0203

How to cite

top

Haiman, George. "Étude des extrêmes d'une suite stationnaire m-dépendante avec une application relative aux accroissements du processus de Wiener." Annales de l'I.H.P. Probabilités et statistiques 23.3 (1987): 425-457. <http://eudml.org/doc/77300>.

@article{Haiman1987,
author = {Haiman, George},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {extreme value theory; increments of the Wiener process; sequence of record times; record values},
language = {fre},
number = {3},
pages = {425-457},
publisher = {Gauthier-Villars},
title = {Étude des extrêmes d'une suite stationnaire m-dépendante avec une application relative aux accroissements du processus de Wiener},
url = {http://eudml.org/doc/77300},
volume = {23},
year = {1987},
}

TY - JOUR
AU - Haiman, George
TI - Étude des extrêmes d'une suite stationnaire m-dépendante avec une application relative aux accroissements du processus de Wiener
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1987
PB - Gauthier-Villars
VL - 23
IS - 3
SP - 425
EP - 457
LA - fre
KW - extreme value theory; increments of the Wiener process; sequence of record times; record values
UR - http://eudml.org/doc/77300
ER -

References

top
  1. [1] P. Deheuvels, Strong Approximation in Extreme Value Theory and Applications, Proc. Coll. Math. Soc. Janos Bolay, 1982, p. 369-403. Zbl0568.60056MR807566
  2. [2] J. Galambos, The Asymptotic Theory of Extreme Order Statistics, 1978, Wiley, New York. Zbl0381.62039MR489334
  3. [3] G. Haiman, Valeurs extrêmales de suites stationnaires de variables aléatoires m-dépendantes, Ann. Inst. Henri Poincaré, vol. XVII, n° 3, 1981, p. 309-330. Zbl0479.60044MR631245
  4. [4] S. Carlin et J. Mcgregor, Coincidence Probabilities, Pacific J. Math., vol. 911, 1959, p. 41-64. Zbl0092.34503MR114248
  5. [5] J. Ortega et M. Wschebor, On the Increments of the Wiener Process, Z. Wahrsheinlichkeit verv. Gebiete, vol. 65, 1984, p. 329-339. Zbl0506.60082MR731225
  6. [6] P. Revesz, On the Increments of Wiener and Related Processes, The Annals of Probability, vol. 10, n° 3, 1982, p. 613-622. Zbl0493.60038MR659532
  7. [7] L.A. Shepp, First Passage Time for a Particular Gaussian Process, Ann. Math. Stat., vol. 42, n° 3, 1971, 946-951. Zbl0216.21203MR278375
  8. [8] D. Slepian, The One-Sided Barrier Problem for Gaussian Noise, Bell System Tech. J., vol. 41, 1962, p. 463-501. MR133183
  9. [9] G.S. Watson, Extreme Values in Samples from m-dependant Stationary Stochastic Processes, Ann. Math. Statist., vol. 25, 1954, p. 798-800. Zbl0056.36204MR65122
  10. [10] G.F. Newell, Asymptotic Extremes for m-dependent Random Variables, Ann. Math. Statist., vol. 35, 1964, p. 1322-1325. Zbl0239.60033MR164361

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.