Approximation gaussienne d'algorithmes stochastiques à dynamique markovienne

Catherine Bouton

Annales de l'I.H.P. Probabilités et statistiques (1988)

  • Volume: 24, Issue: 1, page 131-155
  • ISSN: 0246-0203

How to cite

top

Bouton, Catherine. "Approximation gaussienne d'algorithmes stochastiques à dynamique markovienne." Annales de l'I.H.P. Probabilités et statistiques 24.1 (1988): 131-155. <http://eudml.org/doc/77316>.

@article{Bouton1988,
author = {Bouton, Catherine},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {stochastic approximation algorithms; asymptotic behaviour; Gaussian diffusions; transition kernels; mixing properties},
language = {fre},
number = {1},
pages = {131-155},
publisher = {Gauthier-Villars},
title = {Approximation gaussienne d'algorithmes stochastiques à dynamique markovienne},
url = {http://eudml.org/doc/77316},
volume = {24},
year = {1988},
}

TY - JOUR
AU - Bouton, Catherine
TI - Approximation gaussienne d'algorithmes stochastiques à dynamique markovienne
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1988
PB - Gauthier-Villars
VL - 24
IS - 1
SP - 131
EP - 155
LA - fre
KW - stochastic approximation algorithms; asymptotic behaviour; Gaussian diffusions; transition kernels; mixing properties
UR - http://eudml.org/doc/77316
ER -

References

top
  1. [1] A. Benveniste, Introduction à la méthode de l'équation différentielle moyenne pour l'étude des algorithmes récursifs, exemples, C.N.R.S., Outils et Modèles mathématiques pour l'Automatique, l'Analyse des Systèmes, et le Traitement du Signal, vol. 1, 1981. Zbl0463.93067
  2. [2] P. Billingsley, Convergence of Probability Measures, Wiley, 1968. Zbl0172.21201MR233396
  3. [3] C. Bouton, Approximation gaussienne d'algorithmes stochastiques à dynamique markovienne, Thèse de 3e cycle, éditée par l'École Polytechnique. Zbl0643.60038
  4. [4] M.I. Freidlin et A.D. Wentzell, Random Perturbations of Dynamical Systems, Springer, 1984. Zbl0522.60055MR722136
  5. [5] E.G. Gladyshev, On Stochastic Approximation, Theory of Probability and its Applications, vol. 10, p. 275-278. 
  6. [6] S. Geman, Approximate Solution of Random Equations, Bharucha-Reid, 1979. Zbl0466.62076
  7. [7] R.Z. Khas'minsky, On Stochastic Processes Defined by Differential Equations with a Small Parameter, Theory Prob. Appl., vol. II, 1966, p. 211-222. Zbl0168.16002
  8. [8] H.J. Kushner et H. Huang, Rates of convergence for stochastic approximation type algorithms, S.I.A.M. J. Control, vol. 17, n° 5, 1979. Zbl0418.93093MR540841
  9. [9] H.J. Kushner, A Martingale Method for the Convergence of a Sequence of Processes to a Jump-Diffusion Process, Z. W., vol. 53, 1980, p. 209-219. Zbl0417.60009MR580914
  10. [10] H.J. Kushner, Approximation and Weak Convergence Methods for Random Processes, M.I.T. Press, Cambridge, 1984. Zbl0551.60056MR741469
  11. [11] L. Ljung et T. Soderström, Theory and Practice of Recursive Identification, M.I.T. Press, 1983. Zbl0548.93075MR719192
  12. [12] L. Ljung, Analysis of Recursive Stochastic Algorithms, I.E.E.E. Trans. on Autom. Control, vol. AC 22, n° 4, 1977. Zbl0362.93031MR465458
  13. [13] M. Metivier et P. Priouret, Théorèmes de convergence presque sûre pour une classe d'algorithmes à pas décroissants, Probability Theory (à paraître). Zbl0588.62153
  14. [14] M. Metivier et P. Priouret, Convergence avec probabilité (1-∈) d'algorithmes stochastiques et application à l'égaliseur aveugle, Ann. des Télécommunications, t. 41, n° 5-6, 1986. Zbl0607.62097
  15. [15] M. Metivier et P. Priouret, Application of a Kushner and Clark Lemma to General Classes of Stochastic Algorithms, I.E.E.E. Trans. Inf. Theory, vol. IT-30, 1984, p. 140- 150. Zbl0546.62056MR807052
  16. [16] G.C. Papanicolaou et N. Kolher, Asymptotic Theory of Mixing Stochastic Ordinary Differential Equations, Comm. Pure Appl. Math., vol. 27, 1974, p. 641-668. Zbl0288.60056MR368142
  17. [17] Sacks, Asymptotic Distribution of Stochastic Approximation Procedures, Ann. Math. Stat., vol. 29, 1958, p. 373-405. Zbl0229.62010MR98427
  18. [18] D.W. Strook et S.R.S. Varadhan, Multidimensionnal Diffusion Processus, Springer-Verlag, Berlin, 1979. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.