Comparaison des exposants de Lyapounov des processus markoviens multiplicatifs

Philippe Bougerol

Annales de l'I.H.P. Probabilités et statistiques (1988)

  • Volume: 24, Issue: 4, page 439-489
  • ISSN: 0246-0203

How to cite

top

Bougerol, Philippe. "Comparaison des exposants de Lyapounov des processus markoviens multiplicatifs." Annales de l'I.H.P. Probabilités et statistiques 24.4 (1988): 439-489. <http://eudml.org/doc/77335>.

@article{Bougerol1988,
author = {Bougerol, Philippe},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {products of random matrices; Lyapunov exponents; cocycle of random matrices; Lyapunov spectrum},
language = {fre},
number = {4},
pages = {439-489},
publisher = {Gauthier-Villars},
title = {Comparaison des exposants de Lyapounov des processus markoviens multiplicatifs},
url = {http://eudml.org/doc/77335},
volume = {24},
year = {1988},
}

TY - JOUR
AU - Bougerol, Philippe
TI - Comparaison des exposants de Lyapounov des processus markoviens multiplicatifs
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1988
PB - Gauthier-Villars
VL - 24
IS - 4
SP - 439
EP - 489
LA - fre
KW - products of random matrices; Lyapunov exponents; cocycle of random matrices; Lyapunov spectrum
UR - http://eudml.org/doc/77335
ER -

References

top
  1. [1] L. Arnold et V. Wihstutz éd., Lyapunov Exponents, Proceedings, Bremen, 1984. Lecture Notes in Math, n° 1186, 1986, Springer Verlag, Berlin, Heidelberg, New York. Zbl0599.60061MR850066
  2. [2] L. Arnold, W. Kliemann et E. Oejelklaus, Lyapunov Exponents of Linear Stochastic systems, in [1], 1986, p. 85-125. Zbl0588.60047MR850072
  3. [3] L. Arnold, E. Oejelklaus et E. Pardoux, Almost Sure and Moment Stability for Linear Ito Equations, in [1], 1986, p. 129-159. Zbl0588.60049MR850074
  4. [4] L. Arnold et L. San Martin, A Control Problem Related to the Lyapunov Spectrum of Stochastic Flows, Matematica Aplicada e computational, vol. 5, n° 1, 1986, p. 31-64. Zbl0641.93069MR885003
  5. [5] P.H. Baxendale, Lyapunov Exponents and Relative Entropy for a Stochastic Flow of Diffeomorphisms, Preprint, 1986. MR995809
  6. [6] J.M. Bismut, Mécanique Aléatoire, Lecture Notes in Math., n° 866, Springer Verlag, Berlin, Heidelberg, New York. Zbl0457.60002MR665595
  7. [7] P. Bougerol et J. Lacroix, Products of Random Matrices with Applications to Schrödinger Operators, 1985, Birkhäuser, P. P. M., Boston, Basel, Stuttgart. Zbl0572.60001MR886674
  8. [8] P. Bougerol, Limit Theorem for Products of Random Matrices with Markovian Dependence, Proceedings of the First International Congress of the Bernoulli Society, 1986 (à paraître). Zbl0682.60004MR1092426
  9. [9] P. Bougerol, Théorèmes limites pour les systèmes linéaires à coefficients markoviens, Probab. Th. Rel. Fields, vol. 78, 1988, p. 193-221. Zbl0627.60054MR945109
  10. [10] A. Caverhill, A Formula for the Lyapunov Numbers of a Stochastic Flow. Application to a Perturbation Theorem, Stochastics, vol. 14, 1985, p. 209-226. Zbl0557.60048MR800244
  11. [11] A. Caverhill, Furstenberg's Theorem for Nonlinear Stochastic Systems, Probab. Th. Rel. Fields, vol. 74, 1987, p. 529-534. Zbl0592.60043
  12. [12] A. Caverhill, Lyapunov Exponents for Stochastic Flows on Manifolds, in [1], 1986, p. 292-307. Zbl0602.58053
  13. [13] A. Caverhill, M. Chappell et K. Elworthy, Characteristic Exponents for Stochastic Flows, Stochastic Processes. Mathematics and Physics, S. ALBEVERIO et al. éd., Lecture Notes in Math, n° 1158, 1987, Springer Verlag, Berlin, Heidelberg, New York, p. 52-72. Zbl0651.60036MR838558
  14. [14] P. Chassaing, Convergence d'un produit semi markovien de matrices et simplicité du spectre de la limite, Preprint, 1986. 
  15. [15] C. Dellacherie et P.A. Meyer, Probabilités et Potentiels, tome 1, 1975, Hermann, Paris. Zbl0323.60039MR488194
  16. [16] F. Delyon, Y. Levy et B. Souillard, Anderson Localization for One- and Quasi One-Dimensional systems, J. Stat. Phys., vol. 41, 1985, p. 375. Zbl0576.60053MR814838
  17. [17] F. Delyon, B. Simon et B. Souillard, Localization for Off-diagonal Disorder and for Continuous Schrôdinger Operators, Commun. Math. Phys., vol. 109, 1987, p. 157- 165. Zbl0634.35070MR879035
  18. [18] N. Dunford et J. Schwartz, Linear Operators, vol. 1, 1958, Interscience Publishers, Wiley, New York. Zbl0084.10402MR117523
  19. [19] K. Elworthy, Stochastic DifferentialEquations on Manifolds, L. M. S.Lecture notes, 1982, Cambridge University Press. Zbl0514.58001MR675100
  20. [20] I.J. Goldsheid et G.A. Margulis, La condition de simplicité du spectre des exposants de Lyapounov, 1987 (à paraître). 
  21. [21] Y. Guivarc'h, Exposants caractéristiques des produits de matrices aléatoires en dépendance markovienne, in Probability measures on group 7, H. HEYER éd., Lecture Notes in Math, n° 1064, 1984, Springer Verlag, Berlin, Heidelberg, New York, p. 161-181. Zbl0561.60014MR772409
  22. [22] Y. Guivarc'h et A. Raugi, Frontière de Furstenberg, propriétés de contraction et théorèmes de convergence, Zeit. für Wahrscheinlichkeitstheorie und Verw. Gebiete, vol. 69, 1985, p. 187-242. Zbl0558.60009MR779457
  23. [23] Y. Guivarc'h et A. Raugi. Quelques remarques sur les produits de matrices aléatoires indépendantes, C. R. Acad. Sci. Paris, t. 304, série I, 1987, p. 199-208. Zbl0619.22010MR880926
  24. [24] R.Z. Hashminski, Stochastic Stability of Differential Equations, Alphen, Sijthoff and Noordhoff, 1980. Zbl0441.60060
  25. [25] S. Helgason, Differential Geometry, Lie groups, and Symmetric spaces, Academic press, New York, San Francisco, London, 1978. Zbl0451.53038MR514561
  26. [26] K. Hewitt et A. Ross, Abstract Harmonic Analysis 1, Springer Verlag, Berlin, Heidelberg, New York, 1963. Zbl0115.10603
  27. [27] K. Ichihara et H. Kunita, A Classification of the Second Order Degenerate Elliptic Operators and its Probabilistic Characterization, Zeit. für Wahrscheinlichkeitstheorie und Verw. Gebiete, vol. 30, 1974, p. 235-254. Zbl0326.60097MR381007
  28. [28] N. Ikeda et S. Watanabe, Stochastic DifferentialEquations and Diffusion Processes, North Holland-Kodansha, Amsterdam, Tokyo, 1981. Zbl0495.60005MR637061
  29. [29] I. Iscoe, P. Ney et E. Nummelin, Large Deviations of Uniformly Recurrent Markov Additive Processes, Adv. in Appl. Proba., vol. 6, p. 373-412. Zbl0602.60034MR826590
  30. [30] V. Jurdjevic et H. Sussmann, Control Systems on Lie Groups, J. Diff. Equs., vol. 12, 1972, p. 313-329. Zbl0237.93027MR331185
  31. [31] Y. Kifer, Ergodic Theory of Random Transformations, Birkhäuser, P. P. M., Boston, Basel, Stuttgart, 1986. Zbl0604.28014MR884892
  32. [32] J.F.C. Kingman, Subadditive Ergodic Theory, Ann. Proba., vol. 1, 1973, p. 883-909. Zbl0311.60018MR356192
  33. [33] S. Kobayashi et K. Nomizu, Foundations of Differential Geometry, Interscience Publishers, Wiley, New York, 1969. Zbl0175.48504MR238225
  34. [34] S. Kotani, Limit Theorems of Hypoelliptic Diffusion Processes, in Probability Theory and Mathemetical Statistics, K. ITO et J. V. PROKHOROV éd., Lecture Notes in Math., n° 1021, 1983, Springer Verlag, Berlin, Heidelberg, New York, p. 333-338. Zbl0525.60082MR736000
  35. [35] H. Kunita, Supports of Diffusion Processes and Controllability Problems, Proceed. Intern. Symp. Stochastic Diff. Equs., Kyoto, 1976, p. 163-185, Wiley, New York, 1978. Zbl0409.60063MR536011
  36. [36] F. Ledrappier, Quelques Propriétés des Exposants Caractéristiques, in École d'été de Saint-Flour 12, 1982, P.L. Hennequin éd., Lecture Notes in Math., n° 1097, 1984, Springer Verlag, Berlin, Heidelberg, New York. Zbl0578.60029MR876081
  37. [37] F. Ledrappier, Positivity of the Exponent for Stationary Sequences of Matrices, in [1], 1986, p. 56-73. Zbl0591.60036MR850070
  38. [38] F. Ledrappier et K.L. Young, Entropy Formula for Random Transformations, Preprint, 1986. Zbl0638.60054
  39. [39] S.A. Molchanov, The Structure of Eigenfunctions of One-Dimensional Unordered Structures, Math. U.S.S.R. Izvestija, vol. 12, 1978, p. 69-101. Zbl0401.34023
  40. [40] M. Obata, The Conjectures About Conformal Transformations, J. Diff. Geom., vol. 6, 1971, p. 247-258. Zbl0236.53042MR303464
  41. [41] K.R. Parthasarathy, Probability Measures on Metric Spaces, Academic Press, New York, London, 1967. Zbl0153.19101MR226684
  42. [42] D. Revuz, Markov Chains, North Holland, Amsterdam, New York, Oxford, 1984. Zbl0539.60073MR758799
  43. [43] G. Royer, Croissance exponentielle de produits markoviens de matrices aléatoires, Ann. I.H.P., vol. 16, 1980, p. 49-62. Zbl0433.60073MR575176
  44. [44] D. Stroock et S.R.S. Varadhan, On the Support of Diffusion Processes with Applications to the Strong Maximum Principle, Proc. 6th Berkeley Symp. Math. Stat. Prob. III, 1972, p. 333-368. Zbl0255.60056MR400425
  45. [45] H.J. Sussman, Lie Brackets, Real Analyticity and Geometric Control Theory, in Differential geometric control theory, Birkhâuser, Boston, Basel, Stuttgart, 1983, p. 1-176. Zbl0545.93002MR708500
  46. [46] A.D. Virtser, On the Simplicity of the Spectrum of the Lyapunov Characteristic Indices of a Product of Random Matrices, Theor. Proba. Appl., vol. 28, 1984, p. 122- 135. Zbl0529.60005

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.