A strong invariance theorem for the tail empirical process
Annales de l'I.H.P. Probabilités et statistiques (1988)
- Volume: 24, Issue: 4, page 491-506
- ISSN: 0246-0203
Access Full Article
topHow to cite
topMason, David M.. "A strong invariance theorem for the tail empirical process." Annales de l'I.H.P. Probabilités et statistiques 24.4 (1988): 491-506. <http://eudml.org/doc/77336>.
@article{Mason1988,
author = {Mason, David M.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Wiener processes; functional law of the iterated logarithm; tail empirical processes; tail quantile processes},
language = {eng},
number = {4},
pages = {491-506},
publisher = {Gauthier-Villars},
title = {A strong invariance theorem for the tail empirical process},
url = {http://eudml.org/doc/77336},
volume = {24},
year = {1988},
}
TY - JOUR
AU - Mason, David M.
TI - A strong invariance theorem for the tail empirical process
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1988
PB - Gauthier-Villars
VL - 24
IS - 4
SP - 491
EP - 506
LA - eng
KW - Wiener processes; functional law of the iterated logarithm; tail empirical processes; tail quantile processes
UR - http://eudml.org/doc/77336
ER -
References
top- A. Araujo and E. Giné, The CentralLimit Theorem for Real and Banach Valued Random Variables, John Wiley & Sons, New York, 1980. Zbl0457.60001
- B. Cooil, Limiting MultivariateDistribution of Intermediate Order Statistics, Ann. Probab., Vol. 13, 1985, pp. 469-477. Zbl0572.62024MR781417
- M. Csörgó and P. Révész, Strong Approximations in Probability and Statistics, Academic Press, New York, Akadémai Kiadó;;;;, Budapest, 1981. Zbl0539.60029MR666546
- M. Csörgó and D.M. Mason, On the Asymptotic Distribution of Weighted Uniform Empirical and Quantile Processes in the Middle and on the Tails, Stochastic Process. Appl., Vol. 21, 1985, pp. 119-132. Zbl0584.62025MR834992
- J.H.J. Einmahl and D.M. Mason, Laws of the Iterated Logarithm in the Tails for Weighted Uniform Empirical Processes, Ann. Probab., Vol. 16, 1988 a, pp. 126-141. Zbl0652.60038MR920259
- J.H.J. Einmahl and D.M. Mason, Strong Limit Theorems for Weighted Quantile Processes, Ann. Probab., 1988 b (to appear). Zbl0659.60052MR958207
- W. Feller, An Introduction to Probability Theory and its Applications, Vol. 1, Third Ed., Wiley, New York, 1968. Zbl0155.23101MR228020
- H. Finkelstein, The Law of Iterated Logarithm for Empirical Distributions, Ann. Math. Statist., Vol. 42, 1971, pp. 607-615. Zbl0227.62012MR287600
- P. Gaenssler and W. Stute, Wahrscheinlichkeitstheorie, Springer-Verlag, Berlin, Heidelberg, New York, 1977. Zbl0357.60001MR501219
- B.R. James, A. FunctionalLaw of the Iterated Logarithm for Weighted Empirical Distributions, Ann. Probab., Vol. 3, 1975, pp. 762-772. Zbl0347.60030MR402881
- J. Kiefer, Iterated LogarithmAnalogues for Sample Quantiles when pn↓0, Proceedings Sixth Berkeley Symp. Math. Statist. Probab., Vol. I, 1972, pp. 227-244, Univ. of California Press, Berkeley, Los Angeles. Zbl0264.62015MR402882
- J. Komlós, P. Major and G. Tusnády, An Approximation of Partial Sums of Independent rv's and the Sample df, I, Z. Wahrsch. verw. Gebiete, Vol. 32, 1975, pp. 111-131. Zbl0308.60029MR375412
- T.L. Lai, Reproducing Kernel Hilbert Spaces and the Law of the Iterated Logarithm for Gaussian Processes, Z. Wahrsch. verw. Gebiete, Vol. 29, 1974, pp. 7-19. Zbl0272.60024MR368121
- P. Major, Approximations of Partial Sums of i.i.d.r.v.s. when the Summands Have Only Two Moments, Z. Wahrsch. verw. Gebiete, Vol. 35, 1976, pp. 221-229. Zbl0338.60032MR415744
- D.M. Mason, Sums of Extreme Value Processes, Preprint, 1988.
- D.M. Mason and W.R. Van Zwet, A Refinement of the KMT Inequality for the Uniform Empirical Process, Ann. Probab., Vol. 15, 1987, pp. 871-884. Zbl0638.60040MR893903
- S. Orey and W.E. Pruitt, Sample Functions of the N-Parameter Wiener Process, Ann. Probab., Vol. 1, 1973, pp. 138-163. Zbl0284.60036MR346925
- W. Philipp and W. Stout, Invariance Principles for Martingales and Sums of Independent Random Variables, Math. Z., Vol. 192, 1986, pp. 253-264. Zbl0601.60033MR840828
- G.R. Shorack and J.A. Wellner, Empirical Processes with Applications to Statistics, John Wiley & Sons, New York, 1986. Zbl1170.62365
- M.J. Wichura, Some Strassen-Type Laws of the Iterated Logarithm for Multiparameter Stochastic Processes with Independent Increments, Ann. Probab., Vol. 1, 1973, pp. 272- 296. Zbl0288.60030MR394894
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.