Chung-type functional laws of the iterated logarithm for tail empirical processes

Paul Deheuvels

Annales de l'I.H.P. Probabilités et statistiques (2000)

  • Volume: 36, Issue: 5, page 583-616
  • ISSN: 0246-0203

How to cite

top

Deheuvels, Paul. "Chung-type functional laws of the iterated logarithm for tail empirical processes." Annales de l'I.H.P. Probabilités et statistiques 36.5 (2000): 583-616. <http://eudml.org/doc/77673>.

@article{Deheuvels2000,
author = {Deheuvels, Paul},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {empirical processes; strong laws; functional laws of the iterated logarithm},
language = {eng},
number = {5},
pages = {583-616},
publisher = {Gauthier-Villars},
title = {Chung-type functional laws of the iterated logarithm for tail empirical processes},
url = {http://eudml.org/doc/77673},
volume = {36},
year = {2000},
}

TY - JOUR
AU - Deheuvels, Paul
TI - Chung-type functional laws of the iterated logarithm for tail empirical processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2000
PB - Gauthier-Villars
VL - 36
IS - 5
SP - 583
EP - 616
LA - eng
KW - empirical processes; strong laws; functional laws of the iterated logarithm
UR - http://eudml.org/doc/77673
ER -

References

top
  1. [1] de Acosta A., Small deviations in the functional central limit theorem with applications to functional laws of the iterated logarithm, Ann. Probab.11 (1983) 78-101. Zbl0504.60033MR682802
  2. [2] de Acosta A., On the functional form of Lévy's modulus of continuity for Brownian motion, Z. Wahrsch. Verw. Gebiete69 (1985) 567-579. Zbl0548.60034MR791912
  3. [3] Adler R.J., An Introduction to Continuity, Extrema and Related Topics for General Gaussian Processes, IMS, Hayward, CA, 1990. Zbl0747.60039MR1088478
  4. [4] Ash R.A., Gardner M.F., Topics in Stochastic Processes, Academic Press, New York, 1975. Zbl0317.60014MR448463
  5. [5] Berthet P., On the rate of clustering to the Strassen set for increments of the uniform empirical process, J. Theoret. Probab.10 (1997) 557-579. Zbl0884.60029MR1468393
  6. [6] Borell C., A note on Gaussian measures which agree on balls, Ann. Inst. Henri Poincaré, Probab. Statist.13 (1977) 231-238. Zbl0385.60007MR482971
  7. [7] Borovkov A.A., Mogulskii A.A., On probabilities of small deviations for stochastic processes, Siberian Adv. Math.1 (1991) 39-63. Zbl0718.60024MR1100316
  8. [8] Cameron R.H., Martin W.T., Evaluations of various Wiener integrals by use of certain Sturm-Liouville differential equations, Bull. Amer. Math. Soc.51 (1945) 73-90. Zbl0063.00698MR11401
  9. [9] Castelle L., Laurent-Bonvalot L., Strong approximations of bivariate uniform empirical processes, Ann. Inst. Henri Poincaré, Probab. Statist.34 (1998) 425-480. Zbl0915.60048MR1632841
  10. [10] Chung K.L., On the maximum partial sums of sequences of independent random variables, Trans. Amer. Math. Soc.64 (1948) 205-233. Zbl0032.17102MR26274
  11. [11] Csáki E., A relation between Chung's and Strassen's law of the iterated logarithm, Z. Wahrsch. Verw. Gebiete54 (1980) 287-301. Zbl0441.60027MR602512
  12. [12] Csáki E., A lim inf result in Strassen's law of the iterated logarithm, Colloq. Math. Soc. János Bolyai57 (1989) 83-93. Zbl0719.60033MR1116781
  13. [13] Csörgö M., Mason D.M., On the asymptotic distribution of weighted uniform empirical and quantile processes in the middle and on the tails, Stochastic Process. Appl.21 (1985) 119-132. Zbl0584.62025MR834992
  14. [14] Csörgö M., Révész P., How small are the increments of a Wiener process?, Stochastic Process. Appl.8 (1978) 119-129. Zbl0387.60032MR520824
  15. [15] M. Csörgö M., Révész P., Strong Approximations in Probability and Statistics, Academic Press, New York, 1981. Zbl0539.60029MR666546
  16. [16] Deheuvels P., Strong laws for local quantile processes, Ann. Probab.25 (1997) 2007-2054. Zbl0902.60027MR1487444
  17. [17] Deheuvels P., Lifshits M.A., Necessary and sufficient conditions for the Strassen law of the iterated logarithm in nonuniform topologies, Ann. Probab.22 (1994) 1838-1856. Zbl0840.60027MR1331207
  18. [18] Deheuvels P., Mason D.M., Nonstandard functional laws of the iterated logarithm for tail empirical and quantile processes, Ann. Probab.18 (1990) 1693–1722. Zbl0719.60030MR1071819
  19. [19] Deheuvels P., Mason D.M., Random fractal functional laws of the iterated logarithm, Studia Sci. Math. Hungar.34 (1998) 89-106. Zbl0916.60037MR1645150
  20. [20] Goodman V., Kuelbs J., Rates of clustering for some Gaussian self-similar processes, Probab. Theory Related Fields88 (1991) 47-75. Zbl0695.60040MR1094077
  21. [21] Grill K., A lim inf result in Strassen's law of the iterated logarithm, Probab. Theory Related Fields89 (1991) 149-157. Zbl0722.60030MR1110535
  22. [22] Itô K., McKean H.P. Jr., Diffusion Processes and their Sample Paths, Springer, Berlin, 1965. Zbl0127.09503MR345224
  23. [23] Kuo H.H., Gaussian Measures in Banach Spaces, Lectures Notes in Math., Vol. 463, Springer, Berlin, 1975. Zbl0306.28010MR461643
  24. [24] Kuelbs J., The law of the iterated logarithm in C[0, 1], Z. Wahrsch. Verw. Gebiete33 (1976) 221-235. Zbl0299.60019MR400361
  25. [25] Kuelbs J., A strong convergence theorem for Banach space valued random variables, Ann. Probab.4 (1976) 744-771. Zbl0365.60034MR420771
  26. [26] Kuelbs J., Li W.V., Talagrand M., Lim inf results for Gaussian samples and Chung's functional LIL, Ann. Probab.22 (1994) 1789-1903. Zbl0849.60022MR1331209
  27. [27] Ledoux M., Talagrand M., Probability in Banach Spaces, Springer, Berlin, 1991. Zbl0748.60004MR1102015
  28. [28] Lifshits M.A., Gaussian Random Functions, Kluwer, Dordrecht, 1995. Zbl0832.60002MR1472736
  29. [29] Mason D.M., A strong invariance theorem for the tail empirical process, Ann. Inst. Henri Poincaré, Probab. Statist.24 (1988) 491-506. Zbl0664.60038MR978022
  30. [30] Mason D.M., van Zwet W.R., A refinement of the KMT inequality for the uniform empirical process, Ann. Probab.15 (1987) 871-884. Zbl0638.60040MR893903
  31. [31] Mogulskii A.A., Small deviations in the space of trajectories, Teor. Veroiatnost. i Primenen.19 (1974) 726-736 (in Russian). Zbl0326.60061MR370701
  32. [32] Mogulskii A.A., On the law of the iterated logarithm in Chung form for functional spaces, Teor. Veroiatnost. i Primenen.24 (1979) 399-407 (in Russian). Zbl0398.60031MR532454
  33. [33] Mueller C., A unification of Strassen's law and Lévy's modulus of continuity, Z. Wahrsch. Verw. Gebiete56 (1981) 163-179. Zbl0463.60031MR618270
  34. [34] Nagaev S.V., On asymptotics of the Wiener measure on a narrow strip, Teor. Veroiatnost. i Primenen.26 (1981) 630 (in Russian). 
  35. [35] Révész P., A generalization of Strassen's functional law of iterated logarithm, Z. Wahrsch. Verw. Gebiete50 (1979) 257-264. Zbl0402.60030MR554545
  36. [36] Shorack G.R., Wellner J.A., Empirical Processes with Applications to Statistics, Wiley, New York, 1986. Zbl1170.62365MR838963
  37. [37] Strassen V., An invariance principle for the law of the iterated logarithm, Z. Wahrsch. Verw. Gebiete3 (1964) 211-226. Zbl0132.12903MR175194

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.