Chung-type functional laws of the iterated logarithm for tail empirical processes
Annales de l'I.H.P. Probabilités et statistiques (2000)
- Volume: 36, Issue: 5, page 583-616
- ISSN: 0246-0203
Access Full Article
topHow to cite
topDeheuvels, Paul. "Chung-type functional laws of the iterated logarithm for tail empirical processes." Annales de l'I.H.P. Probabilités et statistiques 36.5 (2000): 583-616. <http://eudml.org/doc/77673>.
@article{Deheuvels2000,
author = {Deheuvels, Paul},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {empirical processes; strong laws; functional laws of the iterated logarithm},
language = {eng},
number = {5},
pages = {583-616},
publisher = {Gauthier-Villars},
title = {Chung-type functional laws of the iterated logarithm for tail empirical processes},
url = {http://eudml.org/doc/77673},
volume = {36},
year = {2000},
}
TY - JOUR
AU - Deheuvels, Paul
TI - Chung-type functional laws of the iterated logarithm for tail empirical processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2000
PB - Gauthier-Villars
VL - 36
IS - 5
SP - 583
EP - 616
LA - eng
KW - empirical processes; strong laws; functional laws of the iterated logarithm
UR - http://eudml.org/doc/77673
ER -
References
top- [1] de Acosta A., Small deviations in the functional central limit theorem with applications to functional laws of the iterated logarithm, Ann. Probab.11 (1983) 78-101. Zbl0504.60033MR682802
- [2] de Acosta A., On the functional form of Lévy's modulus of continuity for Brownian motion, Z. Wahrsch. Verw. Gebiete69 (1985) 567-579. Zbl0548.60034MR791912
- [3] Adler R.J., An Introduction to Continuity, Extrema and Related Topics for General Gaussian Processes, IMS, Hayward, CA, 1990. Zbl0747.60039MR1088478
- [4] Ash R.A., Gardner M.F., Topics in Stochastic Processes, Academic Press, New York, 1975. Zbl0317.60014MR448463
- [5] Berthet P., On the rate of clustering to the Strassen set for increments of the uniform empirical process, J. Theoret. Probab.10 (1997) 557-579. Zbl0884.60029MR1468393
- [6] Borell C., A note on Gaussian measures which agree on balls, Ann. Inst. Henri Poincaré, Probab. Statist.13 (1977) 231-238. Zbl0385.60007MR482971
- [7] Borovkov A.A., Mogulskii A.A., On probabilities of small deviations for stochastic processes, Siberian Adv. Math.1 (1991) 39-63. Zbl0718.60024MR1100316
- [8] Cameron R.H., Martin W.T., Evaluations of various Wiener integrals by use of certain Sturm-Liouville differential equations, Bull. Amer. Math. Soc.51 (1945) 73-90. Zbl0063.00698MR11401
- [9] Castelle L., Laurent-Bonvalot L., Strong approximations of bivariate uniform empirical processes, Ann. Inst. Henri Poincaré, Probab. Statist.34 (1998) 425-480. Zbl0915.60048MR1632841
- [10] Chung K.L., On the maximum partial sums of sequences of independent random variables, Trans. Amer. Math. Soc.64 (1948) 205-233. Zbl0032.17102MR26274
- [11] Csáki E., A relation between Chung's and Strassen's law of the iterated logarithm, Z. Wahrsch. Verw. Gebiete54 (1980) 287-301. Zbl0441.60027MR602512
- [12] Csáki E., A lim inf result in Strassen's law of the iterated logarithm, Colloq. Math. Soc. János Bolyai57 (1989) 83-93. Zbl0719.60033MR1116781
- [13] Csörgö M., Mason D.M., On the asymptotic distribution of weighted uniform empirical and quantile processes in the middle and on the tails, Stochastic Process. Appl.21 (1985) 119-132. Zbl0584.62025MR834992
- [14] Csörgö M., Révész P., How small are the increments of a Wiener process?, Stochastic Process. Appl.8 (1978) 119-129. Zbl0387.60032MR520824
- [15] M. Csörgö M., Révész P., Strong Approximations in Probability and Statistics, Academic Press, New York, 1981. Zbl0539.60029MR666546
- [16] Deheuvels P., Strong laws for local quantile processes, Ann. Probab.25 (1997) 2007-2054. Zbl0902.60027MR1487444
- [17] Deheuvels P., Lifshits M.A., Necessary and sufficient conditions for the Strassen law of the iterated logarithm in nonuniform topologies, Ann. Probab.22 (1994) 1838-1856. Zbl0840.60027MR1331207
- [18] Deheuvels P., Mason D.M., Nonstandard functional laws of the iterated logarithm for tail empirical and quantile processes, Ann. Probab.18 (1990) 1693–1722. Zbl0719.60030MR1071819
- [19] Deheuvels P., Mason D.M., Random fractal functional laws of the iterated logarithm, Studia Sci. Math. Hungar.34 (1998) 89-106. Zbl0916.60037MR1645150
- [20] Goodman V., Kuelbs J., Rates of clustering for some Gaussian self-similar processes, Probab. Theory Related Fields88 (1991) 47-75. Zbl0695.60040MR1094077
- [21] Grill K., A lim inf result in Strassen's law of the iterated logarithm, Probab. Theory Related Fields89 (1991) 149-157. Zbl0722.60030MR1110535
- [22] Itô K., McKean H.P. Jr., Diffusion Processes and their Sample Paths, Springer, Berlin, 1965. Zbl0127.09503MR345224
- [23] Kuo H.H., Gaussian Measures in Banach Spaces, Lectures Notes in Math., Vol. 463, Springer, Berlin, 1975. Zbl0306.28010MR461643
- [24] Kuelbs J., The law of the iterated logarithm in C[0, 1], Z. Wahrsch. Verw. Gebiete33 (1976) 221-235. Zbl0299.60019MR400361
- [25] Kuelbs J., A strong convergence theorem for Banach space valued random variables, Ann. Probab.4 (1976) 744-771. Zbl0365.60034MR420771
- [26] Kuelbs J., Li W.V., Talagrand M., Lim inf results for Gaussian samples and Chung's functional LIL, Ann. Probab.22 (1994) 1789-1903. Zbl0849.60022MR1331209
- [27] Ledoux M., Talagrand M., Probability in Banach Spaces, Springer, Berlin, 1991. Zbl0748.60004MR1102015
- [28] Lifshits M.A., Gaussian Random Functions, Kluwer, Dordrecht, 1995. Zbl0832.60002MR1472736
- [29] Mason D.M., A strong invariance theorem for the tail empirical process, Ann. Inst. Henri Poincaré, Probab. Statist.24 (1988) 491-506. Zbl0664.60038MR978022
- [30] Mason D.M., van Zwet W.R., A refinement of the KMT inequality for the uniform empirical process, Ann. Probab.15 (1987) 871-884. Zbl0638.60040MR893903
- [31] Mogulskii A.A., Small deviations in the space of trajectories, Teor. Veroiatnost. i Primenen.19 (1974) 726-736 (in Russian). Zbl0326.60061MR370701
- [32] Mogulskii A.A., On the law of the iterated logarithm in Chung form for functional spaces, Teor. Veroiatnost. i Primenen.24 (1979) 399-407 (in Russian). Zbl0398.60031MR532454
- [33] Mueller C., A unification of Strassen's law and Lévy's modulus of continuity, Z. Wahrsch. Verw. Gebiete56 (1981) 163-179. Zbl0463.60031MR618270
- [34] Nagaev S.V., On asymptotics of the Wiener measure on a narrow strip, Teor. Veroiatnost. i Primenen.26 (1981) 630 (in Russian).
- [35] Révész P., A generalization of Strassen's functional law of iterated logarithm, Z. Wahrsch. Verw. Gebiete50 (1979) 257-264. Zbl0402.60030MR554545
- [36] Shorack G.R., Wellner J.A., Empirical Processes with Applications to Statistics, Wiley, New York, 1986. Zbl1170.62365MR838963
- [37] Strassen V., An invariance principle for the law of the iterated logarithm, Z. Wahrsch. Verw. Gebiete3 (1964) 211-226. Zbl0132.12903MR175194
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.