On the distributions of L p norms of weighted quantile processes

Miklós Csörgö; Lajos Horváth

Annales de l'I.H.P. Probabilités et statistiques (1990)

  • Volume: 26, Issue: 1, page 65-85
  • ISSN: 0246-0203

How to cite

top

Csörgö, Miklós, and Horváth, Lajos. "On the distributions of $L_p$ norms of weighted quantile processes." Annales de l'I.H.P. Probabilités et statistiques 26.1 (1990): 65-85. <http://eudml.org/doc/77376>.

@article{Csörgö1990,
author = {Csörgö, Miklós, Horváth, Lajos},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {norms of weighted quantile processes; Lp-norms; integrals of; weighted Wiener processes; integrals of exponential partial sums; processes; quantile function; order statistics; quantile process; Brownian bridge},
language = {eng},
number = {1},
pages = {65-85},
publisher = {Gauthier-Villars},
title = {On the distributions of $L_p$ norms of weighted quantile processes},
url = {http://eudml.org/doc/77376},
volume = {26},
year = {1990},
}

TY - JOUR
AU - Csörgö, Miklós
AU - Horváth, Lajos
TI - On the distributions of $L_p$ norms of weighted quantile processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1990
PB - Gauthier-Villars
VL - 26
IS - 1
SP - 65
EP - 85
LA - eng
KW - norms of weighted quantile processes; Lp-norms; integrals of; weighted Wiener processes; integrals of exponential partial sums; processes; quantile function; order statistics; quantile process; Brownian bridge
UR - http://eudml.org/doc/77376
ER -

References

top
  1. P.J. Bickel, Some contributions to the theory of order statistics, Proceedings of the Fifth Berkeley Symposium, Mathematical Statistics and Probability, Vol. 1, pp. 575-591 (University of California Press, Berkeley, California, 1967). Zbl0214.46602MR216701
  2. H. Chernoff, J. Gastwirth and M.V. Johns, Asymptotic distribution of linear combinations of order statistics with applications to estimation, Ann. Math. Statist., Vol. 38, 1967, pp. 52-72. Zbl0157.47701MR203874
  3. D.M. Chibisov, Some theorems on the limiting behaviour of empirical distribution functions, Selected Transl. Math. Statist. Prob., Vol. 6, 1964, pp. 147-156. Zbl0192.26204
  4. M. Csörgö, Quantile Processes with Statistical Applications (S.I.A.M., Philadelphia, 1983). Zbl0518.62043MR745130
  5. M. Csörgö, S. Csörgö and L. Horváth, An Asymptotic Theory for Empirical Reliability and Concentration Processes, Lect. Notes Stat., Vol. 33, Springer-Verlag, New York, 1966. Zbl0605.62105
  6. M. Csörgö, S. Csörgö, L. Horváth and D.M. Mason, Weighted empirical and quantile processes, Ann. Probab., Vol. 14, 1986, pp. 31-85. Zbl0589.60029MR815960
  7. M. Csörgö, S. Csörgö, L. Horváth and P. Révész, On weak and strong approximations of the quantile process, Proc. Seventh Conf. Probab. Theory, pp. 81-95, Editura Academiei, Bucuresti, 1984. Zbl0591.60029MR867420
  8. M. Csörgö and L. Horváth, Approximations of weighted empirical and quantile processes, Stat. Probab. Lett., Vol. 4, 1986, pp. 275-280. Zbl0676.60042MR858316
  9. M. Csörgö and L. Horváth, Asymptotic representations of self-normalized sums, Probab. Math. Stat. (Wroclaw), Vol. 9, 1988 a, pp. 15-24. Zbl0694.60016MR945676
  10. M. Csörgö and L. Horváth, On the distributions of Lp norms of weighted uniform empirical and quantile processes, Ann. Probab., Vol. 16, 1988 b, pp. 142-161. Zbl0646.62015MR920260
  11. M. Csörgö and L. Horváth, On the distributions of the supremum of weighted quantile processes, Studia Sci. Math. Hung.1989 (to appear). Zbl0737.62046MR1110114
  12. M. Csörgö and D.M. Mason, On the asymptotic distribution of weighted empirical and quantile processes in the middle and on the tails, Stoch. Process. Appl., Vol. 25, 1987, pp. 57-72. 
  13. M. Csörgö and P. Révész, Some notes on the empirical distribution function and the quantile process, Colloquia Mathematica Societatis János Bolyai, 11, Limit Theorems in Probability Theory, P. RÉVÉSZ Ed., pp. 59-71, North-Holland, Amsterdam, 1975. Zbl0315.62013MR402842
  14. M. Csörgö and P. Révész, Strong approximations of the quantile process, Ann. Stat., Vol. 6, 1978, pp. 882-894. Zbl0378.62050MR501290
  15. M. Csörgö and P. Révész, Strong Approximations in Probability and Statistics, Academic Press, New York, 1981. Zbl0539.60029MR666546
  16. S. Csörgö, P. Deheuvels and D.M. Mason, Kernel estimates of the tail index of a distribution, Ann. Stat., Vol. 13, 1985, pp. 1050-1077. Zbl0588.62051MR803758
  17. S. Csörgö, E. Haeusler and D.M. Mason, The asymptotic distribution of trimmed sums, Ann. Probab., Vol. 16, 1988, pp. 672-699. Zbl0647.62030MR929070
  18. S. Csörgö, L. Horváth and D.M. Mason, What portion of the sample makes a partial sum asymptotically stable or normal?, Probability Theory and Related Fields, Vol. 72, 1986, pp. 1-16. Zbl0572.60028MR835156
  19. S. Csörgö and D.M. Mason, Central limit theorems for sums of extreme values, Math. Proc. Cambridge Philos. Soc., Vol. 98, 1985, pp. 547-558. Zbl0581.60025MR803614
  20. S. Csörgö and D.M. Mason, The asymptotic distribution of sums of extreme values from a regularly varying distribution, Ann. Probab., Vol. 14, 1986, pp. 974-983. Zbl0593.60034MR841597
  21. L. De Haan, On Regular Variation and its Application to the Weak Convergence of Sample Extremes, Math. Centre Tracts, 32, Amsterdam, 1975. Zbl0226.60039MR286156
  22. P. Deheuvels and D.M. Mason, The asymptotic behavior of sums of exponential extreme values, Bull. Sci. Math. Ser. 2, Vol. 112, 1988, pp.211-233. Zbl0652.62016MR967146
  23. R.M. Dudley, Some recent results on empirical processes, Probability in Banach Spaces III, Lect. Notes Math., Vol. 860, Springer-Verlag, New York, 1981. Zbl0459.60033MR647958
  24. R.M. Dudley and W. Philipp, Invariance principles for sums of Banach space valued random elements and empirical processes, Z. Wahrsch. Verw. Gebiete, Vol. 62, 1983, pp. 509-552. Zbl0488.60044MR690575
  25. J.H.J. Einmahl and D.M. Mason, Strong limit theorems for weighted quantile processes, Ann. Probab., Vol. 16, 1988, pp. 1623–1643. Zbl0659.60052MR958207
  26. J. Galambos, The Asymptotic Theory of Extreme Order Statistics, Wiley, New York, 1978. Zbl0381.62039MR489334
  27. B.V. Gnedenko, Sur la distribution limite du temps maximum d'une série aléatoire, Annals of Math., Vol. 44, 1943, pp. 423-453. Zbl0063.01643MR8655
  28. L. Horváth, On the tail behaviour of quantile processes, Stoch. Process. Appl., Vol. 25, 1987, pp. 57-72. Zbl0627.60041MR904264
  29. G.S. Lo, A note on the asymptotic normality of sums of extreme values, J. Stat. Planning Inference, Vol. 22, 1989, pp. 127-136. Zbl0675.62012MR996806
  30. D.M. Mason, Asymptotic normality of linear combinations of order statistics with a smooth score function, Ann. Statist., Vol. 9, 1981, pp. 899-908. Zbl0472.62057MR619294
  31. D.M. Mason, Weak convergence of the weighted empirical quantile process in L2 (0,1), Ann. Probab., Vol. 12, 1984, pp. 243-255. Zbl0543.60010MR723743
  32. D.M. Mason and G.R. Shorack, Necessary and sufficient conditions for asymptotic normality of L-statistics, I.M.S. Bulletin, Vol. 17, 1988, p. 138. Zbl0765.62024
  33. N.E. O'Reilly, On the weak convergence of empirical processes in sup-norm metrics, Ann. Probab., Vol. 2, 1974, pp. 642-651. Zbl0301.60007MR383486
  34. D. Poilard, Convergence of Stochastic Processes, Springer-Verlag, New York, 1984. Zbl0544.60045MR762984
  35. R. Pyke and G.R. Shorack, Weak convergence of a two-sample empirical process and a new approach to Chernoff-Savage theorems, Ann. Math. Stat., Vol. 39, 1968, pp. 755-771. Zbl0159.48004MR226770
  36. E. Seneta, Regularly Varying Functions, Lect. Notes Math., Vol. 508, Springer-Verlag, Berlin, 1976. Zbl0324.26002MR453936
  37. R.J. Serfling, Approximation Theorems of Mathematical Statistics, Wiley, New York, 1980. Zbl0538.62002MR595165
  38. L.A. Shepp, Radon-Nikodym derivatives of Gaussian measures, Ann. Math. Statist., Vol. 37, 1966, pp. 321-354. Zbl0142.13901MR190999
  39. G.R. Shorack, Convergence of quantile and spacings processes with applications, Ann. Math. Stat., Vol. 43, 1972, pp. 1400-1411. Zbl0249.62021MR359133
  40. G.R. Shorack, Weak convergence of empirical and quantile processes in sup-norm metrics via KMT constructions, Stoch. Proc. Appl., Vol. 9, 1979, pp. 95-98. Zbl0405.60006MR544718
  41. G.R. Shorack, Weak convergence of the general quantile process in ∥/q∥-metrics, I.M.S. Bulletin, Abstract 82 t-2. 
  42. G.R. Shorack and J.A. Wellner, Empirical Processes with Applications to Statistics, Wiley, New York, 1986. Zbl1170.62365MR838963
  43. S. Stigler, Linear functions of order statistics, Ann. Math. Stat., Vol. 40, 1969, pp.770- 788. Zbl0186.52502MR264822
  44. J.A. Wellner, Limit theorems for the ratio of the empirical distribution function to the true distribution function, Z. Wahrsch. verw. Gebiete, Vol. 45, 1978, pp. 73-88. Zbl0382.60031MR651392

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.