The lifetimes of conditioned diffusion processes
Annales de l'I.H.P. Probabilités et statistiques (1990)
- Volume: 26, Issue: 1, page 87-99
- ISSN: 0246-0203
Access Full Article
topHow to cite
topPinsky, Ross G.. "The lifetimes of conditioned diffusion processes." Annales de l'I.H.P. Probabilités et statistiques 26.1 (1990): 87-99. <http://eudml.org/doc/77377>.
@article{Pinsky1990,
author = {Pinsky, Ross G.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {diffusion; lifetime; conditional gauge theorem},
language = {eng},
number = {1},
pages = {87-99},
publisher = {Gauthier-Villars},
title = {The lifetimes of conditioned diffusion processes},
url = {http://eudml.org/doc/77377},
volume = {26},
year = {1990},
}
TY - JOUR
AU - Pinsky, Ross G.
TI - The lifetimes of conditioned diffusion processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1990
PB - Gauthier-Villars
VL - 26
IS - 1
SP - 87
EP - 99
LA - eng
KW - diffusion; lifetime; conditional gauge theorem
UR - http://eudml.org/doc/77377
ER -
References
top- [1] R. Bañuelos and B. Davis, Heat kernel, eigenfunctions, and conditioned Brownian motion in planar domains, J. Funct. Anal., Vol. 84, 1989, pp. 188-200. Zbl0676.60073MR999496
- [2] A.L. Brown and A. Page, Elements of Functional Analysis, Van Nostrand Reinhold Co., London, 1970. Zbl0199.17902MR358266
- [3] K.L. Chung, The gauge and conditional gauge theorem. Séminaire de ProbabilitésXIX, 1983/1984, Lect. Notes Math., 1123, pp. 496-503, Springer, Berlin. Zbl0561.60084MR889497
- [4] M. Cranston, E. Fabes and Z. Zhao, Conditional gauge and potential theory for the Schrödinger operator, Trans. Am. Math. Soc., Vol. 307, 1988, pp. 171-194. Zbl0652.60076MR936811
- [5] R.D. Deblassie, Doob's conditioned diffusions and their lifetimes, Ann. Probab., July 1988 (to appear). Zbl0648.60079MR942756
- [6] R.D. Deblassie, The lifetime of conditioned Brownian motion on certain Lipschitz domains, Probab. Th. Rel. Fields, Vol. 75, 1987, pp. 55-65. Zbl0592.60068MR879551
- [7] M.D. Donsker and S.R.S. Varadhan, On the principal eigenvalue of second-order elliptic differential operators. Comm. Pure Appl. Math., Vol. 29, 1976, pp. 595-621. Zbl0356.35065MR425380
- [8] J.L. Doob, Conditioned Brownian motion and the boundary limits of harmonic functions, Bull. Soc. Math. France, Vol. 85, 1957, pp.431-458. Zbl0097.34004MR109961
- [9] N. Falkner, Feynman-Kac functionals and positive solutions of 1/2 Δu+qu=0, Z. Wahrsch. Verw. Gebiete, Vol. 65, 1983, pp. 19-33. Zbl0496.60078MR717930
- [10] N. Falkner, Conditional Brownian motion in rapidly exhaustible domains, Ann. Probab., Vol. 15, 1987, pp. 1501-1514. Zbl0627.60068MR905344
- [11] D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, Berlin, 1977. Zbl0361.35003MR473443
- [12] R.A. Hunt and R.L. Wheeden, Positive harmonic functions on Lipschitz domains, Trans. Am. Math. Soc., Vol. 143, 1968, pp. 307-322. Zbl0159.40501MR226044
- [13] C.E. Kenig and J. Pipher, The h-path distribution of the lifetime of conditioned Brownian motion for nonsmooth domains, Probab. Theory Related Fields, Vol. 82, 1989, pp. 615-623. Zbl0672.60079MR1002903
- [14] M.G. Krein and M.A. Rutman, Linear operators leaving invariant a cone in a Banach space, A.M.S. Translations series, Vol. 1, 10, 1962, pp. 199-324. Zbl0030.12902
- [15] R.S. Martin, Minimal positive harmonic functions, Trans. Am. Math. Soc., Vol. 49, 1941, pp. 137-172. Zbl0025.33302MR3919JFM67.0343.03
- [16] R. Pinsky, A spectral criterion for the finiteness or infiniteness of stopped Feynman-Kac functionals of diffusion processes, Ann. Probab., Vol. 14, 1986, pp. 1180-1187. Zbl0611.60072MR866341
- [17] M.H. Protter and H.F. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, New York, 1984. Zbl0549.35002MR762825
- [18] D.W. Stroock and S.R.S. Varadhan, Multidimensional Diffusion Processes, Springer-Verlag, Berlin, 1979. Zbl0426.60069MR532498
- [19] S.R.S. Varadhan, Stochastic processes, Lecture Notes, Courant Institute of Mathematical Sciences, 1968.
- [20] Z. Zhao, Conditional gauge with unbounded potential, Z. Wahrsch. Verw. Gebiete, Vol. 65, 1983, pp. 13-18. Zbl0521.60074MR717929
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.