Sur la loi des grands nombres pour les martingales vectorielles et l'estimateur des moindres carrés d'un modèle de régression

M. Duflo; R. Senoussi; A. Touati

Annales de l'I.H.P. Probabilités et statistiques (1990)

  • Volume: 26, Issue: 4, page 549-566
  • ISSN: 0246-0203

How to cite

top

Duflo, M., Senoussi, R., and Touati, A.. "Sur la loi des grands nombres pour les martingales vectorielles et l'estimateur des moindres carrés d'un modèle de régression." Annales de l'I.H.P. Probabilités et statistiques 26.4 (1990): 549-566. <http://eudml.org/doc/77394>.

@article{Duflo1990,
author = {Duflo, M., Senoussi, R., Touati, A.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {law of large numbers; rates of convergence},
language = {fre},
number = {4},
pages = {549-566},
publisher = {Gauthier-Villars},
title = {Sur la loi des grands nombres pour les martingales vectorielles et l'estimateur des moindres carrés d'un modèle de régression},
url = {http://eudml.org/doc/77394},
volume = {26},
year = {1990},
}

TY - JOUR
AU - Duflo, M.
AU - Senoussi, R.
AU - Touati, A.
TI - Sur la loi des grands nombres pour les martingales vectorielles et l'estimateur des moindres carrés d'un modèle de régression
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1990
PB - Gauthier-Villars
VL - 26
IS - 4
SP - 549
EP - 566
LA - fre
KW - law of large numbers; rates of convergence
UR - http://eudml.org/doc/77394
ER -

References

top
  1. [1] T.W. Anderson et J. Taylor, Strong Consistency of Least Squares Estimators in Dynamic Models, Ann. Stat., vol. 7, 1979, p. 484-489. Zbl0407.62040MR527484
  2. [2] Y.S. Chow, A Martingale Inequality and the Law of Large Numbers, Proc. Am. Math. Soc., vol. 11, 1960, p. 107-111. Zbl0102.13501MR112190
  3. [3] Y.S. Chow, Local Convergence of Martingales and the Law of Large Numbers, Ann. Math. Stat., vol. 36, 1965, p. 493-507. Zbl0134.34003MR182040
  4. [4] N. Christopeit, Quasi-least Squares Estimation in Semi-Martingale Regression Models, Stochastics, vol. 16, 1986, p. 255-278. Zbl0586.62137MR837614
  5. [5] A.R. Darwich, Une loi du logarithme itéré pour les martingales locales multidimensionnelles et son application en régression linéaire stochastique, C. R. Acad. Sci. Paris, série I, 1989, p. 387-390. Zbl0721.62029MR1054258
  6. [6] D. Dacunha-Castelle et M. Duflo, Probabilités et statistiques, tome 2, Masson, 1983. Zbl0535.62004MR732786
  7. [7] M. Duflo, R. Senoussi et A. Touati, Propriétés asymptotiques presque sûres de l'estimateur des moindres carrés d'un modèle autorégressif vectoriel, Ann. Inst. Henri Poincaré, série B, vol. 27, n° 1, 1991. Zbl0741.62083
  8. [8] W.A. Fuller et D.P. Hasza, Properties of Predictors for Autoregressive Time Series, J. Am. Stat. Assoc., vol. 76, 1981, p. 155-161. Zbl0465.62093MR608187
  9. [9] A.J. Heunis, Asymptotic Properties of Prediction Error Estimators in Approximate System Identification, Stochastic, vol. 24, 1988, p. 1-43. Zbl0648.60048MR966645
  10. [10] H. Kaufmann, On the Strong Law of Large Numbers for Multivariate Martingales, Stoch. Proc. Appl., vol. 26, 1987, p. 73-85. Zbl0632.60040MR917247
  11. [11] P.R. Kumar, Convergence of Adaptive Control Schemes using Least Squares Parameter Estimates, I.E.E.E. Trans. Aut. Control., 1990, (à paraître). Zbl0716.93078
  12. [12] T.L. Lai, Asymptotically Efficient Adaptive Control in Stochastic Regression Models, Adv. Appl. Math., vol. 7, 1986, p. 23-45. Zbl0615.93041MR834218
  13. [13] T.L. Lai et H. Robbins, Adaptive Design and Stochastic Approximation, Ann. Stat., vol. 7, n° 6, 1979, p. 1196-1221. Zbl0426.62059MR550144
  14. [14] T.L. Lai et H. Robbins, Consistency and Asymptotic Efficiency of Slope Estimates in Stochastic Approximation Schemes, Z. Wahr. Verw. Gebiete, vol. 56, 1981, p. 329- 360. Zbl0472.62089MR621117
  15. [15] T.L. Lai, H. Robbins et C.Z. Wei, Strong Consistency of Least Squares Estimates in Multiple Regression, II, J. Mult. Anal., vol. 9, 1979, p. 343-361. Zbl0416.62051MR548786
  16. [16] T.L. Tai et C.Z. Wei, Least Squares Estimates in Stochastic Regression Models with Applications to Identification and Control of Dynamic Systems, Ann. Math. Stat., vol. 10, 1982, p. 154-166. Zbl0649.62060MR642726
  17. [17] T.L. Lai et C.Z. Wei, Asymptotic Properties of Projections with Applications to Stochastic Regression Problems, J. Mult. Anal., vol. 12, 1982, p. 346-370. Zbl0501.62083MR666011
  18. [18] T.L. Tai et C.Z. Wei, Asymptotic Properties of General Autoregressive Models and Strong Consistency of Least Squares Estimates and their Parameters, J. Mult. Anal., vol. 13, 1983, p. 1-23. Zbl0509.62081MR695924
  19. [19] T.L. Tai et C.Z. Wei, Asymptotic Properties of Multivariate Weighted Sums with Applications to Stochastic Regression in Linear Dynamic Systems, Multivariate analysis, VI, éd. P. R. KRISHNAIAH, North-Holland, 1985, p. 375-393. Zbl0607.62120MR822308
  20. [20] A. Le Breton et M. Musiela, Consistency Sets of Least Squares Estimates in Stochastic Regression Models, Stoch. diff. systems, Lect. Notes Control Inf. Sci., vol. 126, 1989. Zbl0679.62055MR1236070
  21. [21] A. Le Breton et M. Musiela, Laws of Large Number for Semimartingales with Applications to Stochastic Regression, Probab. Theor Rel. Fields, vol. 81, 1989, p. 275- 290. Zbl0662.60043MR982658
  22. [22] D. Lépingle, Sur le comportement asymptotique des martingales locales, Lect. Notes Prob., vol. 649, Springer, 1978. Zbl0375.60062MR520004
  23. [23] P. Lévy, Sur les séries dont les termes sont des variables indépendantes, Studia Math., vol. 3, 1931, p. 119-155. Zbl0003.30301JFM57.0616.01
  24. [24] A.V. Melnikov, The Law of Large Numbers for Multidimensional Martingales, Soviet Math. Dokl., vol. 33, 1986, p. 131-135. Zbl0605.60047MR834691
  25. [25] J. Neveu, Bases mathématiques du calcul des probabilités, Masson, 1964 (2e edition 1970). Zbl0137.11203MR198504
  26. [26] H. Robbins et D. Siegmund, A Convergence Theorem for Non Negative Almost Supermatingales and some Applications, dans J. S. RUSTAGI, Optimization methods in statistics, Academic Press, 1971, p. 233-257. Zbl0286.60025MR343355
  27. [27] V. Solo, Topics in Advanced Time Series Analysis, Lect. Notes Math., vol. 1215, Springer-Verlag, 1982. Zbl0601.62108MR875627
  28. [28] W. Stout, Almost Sure Convergence, Academic Press. Zbl0321.60022
  29. [29] W. Stout, A Martingale Analogue of Kolmogorov's Law of Iterated Logarithm, Z. Wahrscheinlichkeitstheorie, vol. 15, 1970, p. 279-290. Zbl0209.49004MR293701
  30. [30] C.Z. Wei, Asymptotic Properties of Least Squares Estimates in Stochastic Regression Models, Ann. Stat., vol. 13, 1985, p. 1498-1508. Zbl0582.62062MR811506
  31. [31] C.Z. Wei, Adaptive Prediction by Least Squares Predictors in Stochastic Regression Models with Applications to Time Series, Ann. Stat., vol. 15, 1987, p. 1667-1682. Zbl0643.62058MR913581

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.