Sharp large deviations estimates for simulated annealing algorithms
Annales de l'I.H.P. Probabilités et statistiques (1991)
- Volume: 27, Issue: 3, page 291-383
- ISSN: 0246-0203
Access Full Article
topHow to cite
topReferences
top- [1] R. Azencott, Simulated Annealing, Séminaire Bourbaki, 40e année, 1987-1988, No. 697, juin 1988. Zbl0687.60086MR992211
- [2] O. Catoni, Grandes déviations et décroissances de la température dans les algorithmes de recuit, C. R. Acad. Sci. Paris, T. 307, Series I, 1988, p. 535-538. Zbl0645.60035MR966258
- [3] O. Catoni, Rough Large Deviations Estimates for Simulated Annealing. Application to Exponential Schedules, preprint, Ann.Prob., March 1990 (submitted). Zbl0755.60021MR1175253
- [4] O. Catoni, Applications of Sharp Large Deviations Estimates to Optimal Cooling Schedules, preprint, Ann. l'I.H.P., March 1990 (submitted). Zbl0752.60025MR1141244
- [5] O. Catoni, Large Deviations for Annealing, Thesis, University Paris-Sud Orsay, March 1990.
- [6] T.S. Chiang and Y. Chow, On the Convergence Rate of Annealing Processes, Siam J. ControlOptimization, Vol. 26, No. 6, November 1988. Zbl0665.60090MR969338
- [7] R.L. Dobrushin, Central Limit Theorems for Non-Stationary Markov Chains, I, II (english translation) Theor. Prob. Appl., Vol. 1, 1956, pp. 65-80 and 329-383. Zbl0093.15001MR86436
- [8] M.I. Freidlin and A.D. Wentzell, Random Perturbations of Dynamical Systems, Springer Verlag, 1984. Zbl0522.60055MR722136
- [9] S. German and D. Geman, Stochastic Relaxation, Gibbs Distribution, and the Bayesian Restoration of images, I.E.E.E. Trans. Pattern Anal. Machine Intelligence, Vol. 6, 1984, pp. 721-741. Zbl0573.62030
- [10] B. Gidas, Non-Stationary Markov Chains and Convergence of the Annealing Algorithms, J. Stat. Phys., Vol. 39, 1985, pp. 73-131. Zbl0642.60049
- [11] B. Hajek, Cooling Schedules for Optimal Annealing, Math. Oper. Res., Vol. 13, 1988, pp. 311-329. Zbl0652.65050MR942621
- [12] R.A. Holley, S. Kusuoka and D.W. Stroock, Asymptotics of the Spectral Gap with Applications to the Theory of Simulated Annealing, Journal of functional analysis, Vol. 83, 1989, pp. 333-347. Zbl0706.58075MR995752
- [13] R. Holley and D. Stroock, Simulated Annealing via Sobolev Inequalities, Commun. Math. Phys., Vol. 115, 1988, pp. 553-569. Zbl0643.60092MR933455
- [14] C.R. Hwang and S.J. Sheu, Large Time Behaviours of Perturbed Diffusion Markov Processes with Applications I, II et III, preprints, Institute of Mathematics, Academia Sinica, Tapei, Taiwan, 1986.
- [15] C.R. Hwang and S.J. Sheu, Singular Perturbed Markov Chains and Exact Behaviours of Simulated Annealing Process, preprint, J. Theor. Prob., 1988 (submitted). Zbl0755.60047MR1157983
- [16] C.R. Hwang and S.J. Sheu, On the Weak Reversibility Condition in Simulated Annealing, preprint, Institute of Mathematics, Academia Sinica, Taipei, Taiwan, 1988. MR1045158
- [17] M. Iosifescu and R. Theodorescu, Random Processes and Learning, Springer Verlag, 1969. Zbl0194.51101
- [18] D.L. Isaacson and R.W. Madsen, Strongly Ergodic Behaviour for Non-Stationary Markov Processes, Ann. Prob., Vol. 1, 1973, pp. 329-335. Zbl0264.60021MR350858
- [19] S. Kirkpatrick, C.D. Gelatt and M.P. Vecchi, Optimization by Simulated Annealing, Science, Vol. 220, 1983, pp. 621-680. Zbl1225.90162MR702485
- [20] E. Seneta, Non-Negative Matrices and Markov Chains, second ed., Springer Verlag, 1981. Zbl0471.60001
- [21] J.N. Tsitsiklis, A Survey of Large Time Asymptotics of Simulated Annealing Algorithms, in Stochastic Differential Systems, Stochastic Control Theory and Applications, W. FLEMING and P. L. LIONS Eds., I.M.A. vol. in mathematics and its applications, Vol. 10, Springer Verlag, 1988. Zbl0657.90097MR934744
- [22] J.N. Tsitsiklis, Markov Chains with Rare Transitions and Simulated Annealing, Math. Op. Res., Vol. 14, 1989, p. 1. Zbl0664.60067MR984559