Domains of analytic continuation for the top Lyapunov exponent

Yuval Peres

Annales de l'I.H.P. Probabilités et statistiques (1992)

  • Volume: 28, Issue: 1, page 131-148
  • ISSN: 0246-0203

How to cite

top

Peres, Yuval. "Domains of analytic continuation for the top Lyapunov exponent." Annales de l'I.H.P. Probabilités et statistiques 28.1 (1992): 131-148. <http://eudml.org/doc/77421>.

@article{Peres1992,
author = {Peres, Yuval},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {top Lyapunov exponent; analytic continuation; random matrix products},
language = {eng},
number = {1},
pages = {131-148},
publisher = {Gauthier-Villars},
title = {Domains of analytic continuation for the top Lyapunov exponent},
url = {http://eudml.org/doc/77421},
volume = {28},
year = {1992},
}

TY - JOUR
AU - Peres, Yuval
TI - Domains of analytic continuation for the top Lyapunov exponent
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1992
PB - Gauthier-Villars
VL - 28
IS - 1
SP - 131
EP - 148
LA - eng
KW - top Lyapunov exponent; analytic continuation; random matrix products
UR - http://eudml.org/doc/77421
ER -

References

top
  1. [B] G. Birkhoff, Extensions of Jentzch's Theorem, Trans. Am. Math Soc., Vol. 85, 1957, pp. 219-227. Zbl0079.13502MR87058
  2. [BL] P. Bougerol and J. Lacroix, Products of Random Matrices with Applications to SchrödingerOperators, Birkhauser, Basel, 1985. Zbl0572.60001MR886674
  3. [CKN1] J.E. Cohen, H. Kesten and C.M. Newman Eds., Random Matrices and Their Applications, Contemporary Math., Vol. 50, Am. Math. Soc., Providence, 1986. Zbl0581.00014MR841077
  4. [CKN2] J.E. Cohen, H. Kesten and C.M. Newman, Oseledec's Multiplicative Ergodic Theorem: a Proof, in [CKN1]. Zbl0607.60026
  5. [CN] J.E. Cohen and C.M. Newman, The Stability of Large Random Matrices and Their Products, Ann. Probab., Vol. 12, 1984, pp. 283-310. Zbl0543.60098MR735839
  6. [F] H. Furnstenberg, Non-Commuting Random Products, Trans. Am. Math. Soc., Vol. 108, 1963, pp. 377-428. Zbl0203.19102MR163345
  7. [FK] H. Furstenberg and H. Kesten, Products of Random Matrices, Ann. Math. Stat., Vol. 31, 1960, pp. 457-469. Zbl0137.35501MR121828
  8. [GR] Y. Guivarch and A. Raugi, Frontière de Furstenberg, propriétés de contraction et théorèmes de convergence, Zeit. Wahr. verw. Gebeite, Vol. 69, 1985, pp. 187- 242. Zbl0558.60009MR779457
  9. [GRo] R.C. Gunning and H. Rossi, Analytic Functions of Several Complex Variables, Prentice-Hall, 1965. Zbl0141.08601MR180696
  10. [Hen] H. Hennion, Derivabilite du plus grand exposant caractéristique des produits de matrices aléatoires indépendantes à coefficients positifs, preprint, 1990. 
  11. [Hop] E. Hopf, An Inequality for Positive Integral Linear Operators, J. Math. Mech., Vol. 12, 1963, pp. 683-692. Zbl0115.32501MR165325
  12. [Ka] T. Kato, Perturbation Theory for Linear Operators, Second Edition, Springer-Verlag, 1976. Zbl0342.47009MR407617
  13. [KP] R. Kenyon and Y. Peres, Intersecting Random Translates of Invariant Cantor Sets, Inventiones Math., Vol. 104, 1991, pp. 601-629. Zbl0745.28012MR1106751
  14. [Key1] E.S. Key, Computable Examples of the Maximal Lyapunov Exponent, Probab. Th. Rel. Fields, Vol. 75, 1987, pp. 97-107. Zbl0595.60012MR879555
  15. [Key2] E.S. Key, Lower Bounds for the Maximal Lyapunov Exponent, J. Theor. Probab., Vol. 3, 1990, pp. 447-487. Zbl0704.60011MR1057526
  16. [LP1] E. Le Page, Théorèmes limites pour les produits de matrices aléatoires, in Probability Measures on Groups, H. HEYER Ed., Lect. Notes Math., No. 928, Springer-Verlag, 1982, pp. 258-303. Zbl0506.60019MR669072
  17. [LP2] E. le PageRégularité du plus grand exposant caractéristique des produits de matrices aléatoires indépendantes et applications, Ann. Inst. Henri Poincaré, Vol. 25, 1989, pp. 109-142. Zbl0679.60010MR1001021
  18. [Let] G. Letac, A Contraction Principle for Certain Markov Chains and Its Applications, in [CKN1]. Zbl0587.60057
  19. [P] Y. Peres, Analytic dependence of Lyapunov exponents on transition probabilities, Proceedings of the 1990 Oberwolfach conference on Lyapunov exponents, L. ARNOLD et al. Ed., (to appear) Springer VerlagLect. Notes Math., No. 1486. Zbl0762.60005MR1178947
  20. [R] D. Ruelle, Analyticity Properties of the Characteristic Exponents of Random Matrix Products, Adv. Math., Vol. 32, 1979, pp. 68-80. Zbl0426.58018MR534172
  21. [S] E. Seneta, Non-Negative Matrices and Markov Chains, 2nd ed., Springer Verlag, 1981. Zbl0471.60001
  22. [Wil] J.H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University Press, 1965. Zbl0258.65037MR184422
  23. [Wojt] M. Wojtkowski, On Uniform Contraction Generated by Positive Matrices, in [CKN1]. Zbl0584.60017

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.