On subinvariant measures for positive operators in L1

Antoine Brunel; Shlomo Horowitz; Michael Lin

Annales de l'I.H.P. Probabilités et statistiques (1993)

  • Volume: 29, Issue: 1, page 105-117
  • ISSN: 0246-0203

How to cite

top

Brunel, Antoine, Horowitz, Shlomo, and Lin, Michael. "On subinvariant measures for positive operators in L1." Annales de l'I.H.P. Probabilités et statistiques 29.1 (1993): 105-117. <http://eudml.org/doc/77446>.

@article{Brunel1993,
author = {Brunel, Antoine, Horowitz, Shlomo, Lin, Michael},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {existence of an invariant strictly positive element for a nonnegative operator; subinvariant measures of positive operators},
language = {eng},
number = {1},
pages = {105-117},
publisher = {Gauthier-Villars},
title = {On subinvariant measures for positive operators in L1},
url = {http://eudml.org/doc/77446},
volume = {29},
year = {1993},
}

TY - JOUR
AU - Brunel, Antoine
AU - Horowitz, Shlomo
AU - Lin, Michael
TI - On subinvariant measures for positive operators in L1
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1993
PB - Gauthier-Villars
VL - 29
IS - 1
SP - 105
EP - 117
LA - eng
KW - existence of an invariant strictly positive element for a nonnegative operator; subinvariant measures of positive operators
UR - http://eudml.org/doc/77446
ER -

References

top
  1. [B1] A. Brunel, Sur quelques problèmes de la théorie ergodique ponctuelle, Thèse, Univ. of Paris, 1966. 
  2. [B2] A. Brunel, Sur les Sommes d'itérés d'un opérateur positif, Springer, Lecture Notes in Math., Vol. 532, 1976, pp. 19-34. Zbl0336.47004MR512672
  3. [BH] A. Brunel and S. Horowitz, Invariant Measures for Positive Operators, Unpublished, preliminary preprint, 1971. 
  4. [BS] A. Brunel and L. Sucheston, Sur l'existence d'éléments invariants dans les treillis de Banach, C. R. Acad. Sci. Paris, T. 300, Series I, 1985, p. 59-62. Zbl0603.60007MR777610
  5. [DL] Y. Derriennic and M. Lin, On Invariant Measures and Ergodic Theorems for Positive Operators, J. Functional Analysis, Vol. 13, 1973, pp. 252-267. Zbl0262.28011MR355001
  6. [H] S. Horowitz, Transition Probabilites and Contractions of L∞, Z. Wahrscheinlichkeitstheorie verw. Geb., Vol. 24, 1972, pp. 263-274. Zbl0228.60028MR331516
  7. [I Mo] A. Ionescu-Tulcea and M. Moretz, Ergodic Properties of Semi-Markovian Operators on the Z1-Part, Z. Wahrscheinlichkeitstheorie verw. Geb., Vol. 13, 1969, pp. 119-122. Zbl0221.60058MR252603
  8. [K] U. Krengel, Ergodic Theorems, De Gruyter, Berlin, New York, 1985. Zbl0575.28009MR797411
  9. [M] P.A. Meyer, Probabilités et Potentiel, Hermann, Paris, 1966. Zbl0138.10402MR205287
  10. [O] D. Ornstein, The Sums of the Iterates of a Positive Operator, Advances in Probability, Vol. 2, 1970, pp. 85-115. Zbl0321.28013MR286977
  11. [S] L. Sucheston, On the Ergodic Theorem for Positive Operators I, Z. Wahrscheinlichkeitstheorie verw. Geb., Vol. 8, 1967, pp. 1-11. Zbl0175.05103MR213510
  12. [Sa] R. Sato, Positive Operators and the Ergodic Theorem, Pacific J., Vol. 76, 1978, pp. 215-219. Zbl0352.47004MR480945

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.