On existence, uniqueness and stability of solutions of multidimensional SDE's with reflecting boundary conditions
Annales de l'I.H.P. Probabilités et statistiques (1993)
- Volume: 29, Issue: 2, page 163-198
- ISSN: 0246-0203
Access Full Article
topHow to cite
topSłomínski, Leszek. "On existence, uniqueness and stability of solutions of multidimensional SDE's with reflecting boundary conditions." Annales de l'I.H.P. Probabilités et statistiques 29.2 (1993): 163-198. <http://eudml.org/doc/77453>.
@article{Słomínski1993,
author = {Słomínski, Leszek},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {weak and strong solutions; stability of solutions; stochastic differential equations; reflecting boundary},
language = {eng},
number = {2},
pages = {163-198},
publisher = {Gauthier-Villars},
title = {On existence, uniqueness and stability of solutions of multidimensional SDE's with reflecting boundary conditions},
url = {http://eudml.org/doc/77453},
volume = {29},
year = {1993},
}
TY - JOUR
AU - Słomínski, Leszek
TI - On existence, uniqueness and stability of solutions of multidimensional SDE's with reflecting boundary conditions
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1993
PB - Gauthier-Villars
VL - 29
IS - 2
SP - 163
EP - 198
LA - eng
KW - weak and strong solutions; stability of solutions; stochastic differential equations; reflecting boundary
UR - http://eudml.org/doc/77453
ER -
References
top- [1] D.J. Aldous, Stopping Time and Tightness. II, Ann. Probab., Vol. 17, 1989, pp. 586- 595. Zbl0686.60036MR985380
- [2] S.V. Anulova and R.Sh. Liptzer, Diffusional Approximation for Processes with a Normal Reflection, Theory Probab. Appl., Vol. 35, 1990, pp.417-431. Zbl0735.60078MR1069129
- [3] P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968. Zbl0172.21201MR233396
- [4] M. Chaleyat-Maurel, N. El Karoui and B. Marchal, Réflexion discontinue et systèmes stochastiques, Ann. Probab., Vol. 8, 1980, pp. 1049-1067. Zbl0448.60043MR602379
- [5] C. Dellacherie and P.A. Meyer, Probabilités et Potentiel, Hermann, Paris, 1980. Zbl0464.60001MR488194
- [6] N. El Karoui and M. Chaleyat-Maurel, Un problème de réflexions au temps local et aux équations différentielles stochastiques sur R. Cas continu, Astérisque, Vol. 52- 53, 1978, pp.117-144.
- [7] N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland, Amsterdam, 1981. Zbl0495.60005MR637061
- [8] J. Jacod and A.N. Shiryayev, Limit Theorems for Stochastic Processes, Springer-Verlag, Berlin, 1987. Zbl0635.60021MR959133
- [9] A. Jakubowski, J. Mémin and G. Pages, Convergence en loi des suites d'intégrales stochastiques sur l'espace D1 de Skorokhod, Probab. Th. Rel. Fields, Vol. 81, 1989, pp. 111-137. Zbl0638.60049MR981569
- [10] T.G. Kurtz and P. Protter, Weak Limit Theorems for Stochastic Integrals and Stochastic differential Equations, Ann. Probab., Vol. 19, 1991, pp. 1035-1070. Zbl0742.60053MR1112406
- [11] P.L. Lions and A.S. Sznitman, Stochastic Differential Equations with Reflecting Boundary Conditions, Communications on Pure and Applied Mathematics, Vol. 37, 1981, pp. 511-537. Zbl0598.60060MR745330
- [12] V. Mackievicius, SJP Stability of Symmetric Stochastic Differential Equations with Discontinuous Driving Semimartingales, Ann. Inst. Henri Poincaré, Vol. B23, 1987, pp. 575-592. Zbl0636.60057
- [13] H.P. McKean, A Skorokhod's Integral Equations for a Reflecting Barrier Diffusion, J. Math. Kyoto Univ., Vol. 3, 1963, pp. 86-88. Zbl0202.46601
- [14] J. Mémin and L. Słomiński, Condition UT et stabilité en loi des solutions d'équations différentielles stochastiques, Sém. de Probab. XXV, Lect. Notes in Math., No. 1485, Springer-Verlag, Berlin, Heidelberg, New York, 1991, pp. 162-177. Zbl0746.60063MR1187779
- [15] M. Métivier and J. Pellaumail, Une formule de majoration pour martingales, C. R. Acad. Sci. Paris, T. 285, Series A, 1977, pp. 685-688. Zbl0368.60057MR461651
- [16] M. Métivier and J. Pellaumail, On a Stopped Doob's Inequality and General Stochastic Equations, Ann. Probab., Vol. 8, 1980, pp. 96-114. Zbl0426.60059MR556417
- [17] P.A. Meyer and W.A. Zheng, Tightness Criteria for Laws of Semimartingales, Ann. Inst. Henri Poincaré, Vol. B20, 1984, pp. 353-372. Zbl0551.60046MR771895
- [18] P.A. Meyer, Note sur les martingales d'Azema, Sém. de Probab. XXIII, Lect. Notes in Math., Springer-Verlag, Berlin, Heidelberg, New York, 1989.
- [19] P. Protter, Stochastic Differential Equations with Jump Reflection at the Boundary, Stochastics, Vol. 3, 1980, pp. 193-201. Zbl0429.60057MR573203
- [20] Y. Saisho, Stochastic Differential Equations for Multi-dimensional Domain with Reflecting Boundary, Probab. Th. Rel. Fields, Vol. 74, 1987, pp. 455-477. Zbl0591.60049MR873889
- [21] M.A. Shashiashvili, On the Variation of the Difference of Singular Components in the Skorokhod Problem and on Stochastic Differential Systems in a Half-Space, Stochastics, Vol. 24, 1988, pp. 151-169. Zbl0648.60055MR972473
- [22] A.V. Skorokhod, Stochastic Equations for Diffusion Processes in a Bounded Region 1, 2, Theory Probab. Appl., Vol. 6, 1961, pp. 264-274, Vol. 7, 1962, pp. 3-23. Zbl0215.53501
- [23] L. Słomiński, Stability of Strong Solutions of Stochastic Differential Equations, Stoch. Processes Appl., Vol. 31, 1989, pp. 173-202. Zbl0673.60065MR998112
- [24] C. Stricker, Loi de semimartingales et critères de compacité, Sém. de Probab. XIX, Lect. Notes in Math., No. 1123, Springer-Verlag, Berlin, Heidelberg, New York, 1985. Zbl0558.60005MR889478
- [25] H. Tanaka, Stochastic Differential Equations with Reflecting Boundary Condition in Convex Regions, Hiroshima Math. J., Vol. 9, 1979, pp. 163-177. Zbl0423.60055MR529332
- [26] S. Watanabe, On Stochastic Differential Equations for Multi-Dimensional Diffusion Processes with Boundary Conditions, J. Math. Kyoto Univ., Vol. 11, 1971, pp. 169- 180. Zbl0212.20203MR275537
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.